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Background and Methods: The paper presents a combination of two unsupervised techniques for change detection
studies in arid and semi-arid areas. Among Remote Sensing change detection techniques, unsupervised approaches have
the advantage of promptly producing a map of the change between two dates, but often the interpretation of the
results is not straightforward, and requires further processing of the image. The aim of the research is to propose a new
time effective and semi-automated reproducible technique in order to reduce the weakness of the unsupervised
approach in change detection. Two techniques, Change Vector Analysis (CVA) and Maximum Autocorrelation Factor
transform of Multivariate Alteration Detector components (MAD/MAF) are chosen to serve the purpose.

Results and Conclusions: The results of the research, applied to two case studies in the Middle East region, indicate that
the chosen techniques complement each other, since MAD/MAF gives a detailed spatial extent while CVA gives the
semantic interpretation of the output. The research brings further understanding to the use of both unsupervised
procedures and the methodology can be used as a fast semi-automatic preliminary step for more accurate change
detection studies. A further output is a new add-on implementing CVA for the GFOSS (Geospatial Free and Open Source
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Background

In Remote Sensing (RS) of the environment, change de-
tection covers the capability to identify the differences oc-
curred on the Earth surface in time. This task can be
performed through various techniques, and choosing be-
tween them depends also on the characteristics of the
surface that need to be detected. Often change detection
analysis is referred to as Land use/Land Cover Change
(LULCC) analysis, referring to the characterization of the
terrestrial surface in terms of natural and man built types
of cover. A basic condition for change detection studies is
the preliminary co-registration of the images and the cor-
rection for external factors of change on the surface
reflectance, such us atmospheric conditions and differ-
ences in Sun angle, plus the intrinsic characteristics of the
single sensors. The selection of appropriate images, in
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terms of time of the year and weather conditions, allows
to reduce the impact of these factors [1].

LULCC analysis requires in general a first identification
of the surface covers, then a mechanism that compares the
images along a temporal interval. The identification of the
different types of cover is called image classification and
can be carried out through several techniques and proce-
dures [1-3]. Most techniques process the single pixel and
are so called pixel-based techniques. They differentiate
from the relatively recent object-based analysis, that
groups the pixels not only depending on their spectral be-
havior but also on geometrical characteristics, such as
shape, color, size and similarity with neighboring pixels [4].

Considering pixel-based procedures, the categorization of
the different types of classification techniques varies widely
from one author to another, but mainly two different ap-
proaches can be recognized: supervised and unsupervised
classification. In the first approach, supervised classification,
the single images to be compared are classified separately,
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based on a preliminary knowledge of training areas for the
different classes. The user identifies on the image some
polygons of interest that correspond to specific land
cover types. These training areas are then assigned to a
software, that recognizes the spectral characteristics of
each class and performs, through a selected algorithm,
the classification of the rest of the image. The algo-
rithms include maximum likelihood and minimum dis-
tance classification, among others.

Unsupervised procedures on the other hand are used
in absence of samples or previous information on the
ground. In this case the software makes use of the spec-
tral characteristics of the pixels in order to group them
in different classes. The techniques for unsupervised
classification include clustering techniques like the ones
used in unsupervised classification (maximum likeli-
hood, minimum distance, k-means, ISODATA etc.) and
also techniques that make use of simple algebraic pro-
cedures or more complex statistical and mathematical
analysis procedures as a preliminary step for the classi-
fication. The algebraic procedures include differencing,
ratioing, indexes (like Normalized Difference Vegetation
Index — NDVI), while the mathematical analysis tech-
niques include data transformations (like Principal Com-
ponent Analysis - PCA, Tasselled Cap Transform — TCT,
Multivariate Alteration Detector - MAD), Artificial Neural
Network (ANN) analysis, fuzzy logic, Bayesian network
and others. Some unsupervised procedures promptly give
as output a map of the change that must then be inter-
preted assigning a threshold, in order to differentiate the
significant change from the pixels which are unchanged.
The threshold choice, through customary or statistical cri-
teria, is the key for the change interpretation [5, 6].

The choice of the type of techniques to be used depends
on the purpose of the research and on the availability of
ground truth data, accessory material and knowledge of the
studied area. Supervised classification is an ideal procedure,
but often finding both spatial and semantic accuracy can be
challenging and relies on the skills of the classifier. More-
over the availability of knowledge on the field can not al-
ways be complied and an accurate classification can be
time consuming. On the contrary, unsupervised ap-
proaches can be almost automatic and more time-efficient,
but require the researcher to intervene in a second phase
to interpret the results. Therefore, according to the aim of
the researcher, the change detection analysis can be per-
formed using a mixture of more techniques, the so-called
hybrid approach, that combines two or more techniques in
order to improve the results [6, 7].

For this research, which was missing ground truth data,
two semi-automated unsupervised techniques have been
chosen: the Change Vector Analysis (CVA) applied to the
TCT features, and the Maximum Autocorrelation Factor
(MAF) transformation of the MAD.
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CVA, developed in the 80s [8], gives as an output the
direction of the change between two dates for each pixel
of an image, having the advantage of not needing an
image classification to be performed in advance. The
CVA needs in input two (or more) spectral characteris-
tics (bands or spectral features) of the surface, that have
a physical meaning and whose combination in the bands
space can give a physical interpretation of the change.
For this aim TCT features are ideal candidates and have
been widely used in several RS studies [8—11]. In con-
trast to PCA, which must be calculated for each single
image, TCT is meant to be image independent, meaning
that it can be applied to any image, provided that the
TCT coeffiecient have been previously calculated for its
specific satellite sensor.

The second RS methodology used in the present study
is the combined MAD/MAF analysis. MAD transform-
ation was introduced by Nielsen et al. [12] to improve
the simple image differencing technique, by considering
the difference images with maximal variance, obtaining a
new set of uncorrelated images. Although similar, MAD
was intended to be an improvement over PCA transform
[12]. PCA in fact is a statistical procedure used, not only
in RS but in several fields of Science, to transform a set
of correlated variables to a new set of uncorrelated vari-
ables (called components) that consider the principal di-
rections in which the data are spread in the bands space.
PCA is useful to reduce the size and redundancy in the
original data, since most of the information is contained
in the first components, while the latter ones contain
mainly noise. To do so, PCA considers the maximum
variance in the dataset, whereas MAD considers max-
imum autocorrelation, since it takes into account the
maximum variance of the difference images. Doing such,
MAD eliminates issues related to the possibility that a
dominating element in the image affects the PCA com-
ponents, with a disproportioned high variance compared
to other elements of the image. Besides this, MAD has
the huge advantage of being invariant for linear transfor-
mations of the data, making it insensitive to the applica-
tion to raw DN or transformed images [12, 13].

Like PCA, though, MAD analysis is locally applied to
the single pixel and therefore doesn’t retain the spatial
context of the adjacent pixels. With this consideration in
mind, Nielsen introduced the application of the MAF
transform to the MAD components, which is intended
to produces variates ordered by spatial autocorrelation
[14]. The MAD/MAF method thus provides a “statisti-
cally rigorous system to determine the spatially coherent
patterns of major change in an image sequence” [12].

Several comparison studies have been carried out on
the performance of these three techniques, CVA, PCA
and MAD, also in desertification studies [2, 15, 16]. In
particular Pannenbecker [15] concluded that CVA and
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MAD were the most effective techniques, in terms of
desertification indicators and in terms of results. Consid-
ering also the added value, described above, of the MAF
applications to the MAD components, in our research
we chose to use CVA and MAD/MATF analysis, and fur-
ther developed them in order to improve the analysis by
combining the results of the two.

In desertification studies, change detection covers a
prominent role, since it allows the identification of surface
elements that changed over a large scale, both spatial and
temporal, and constitutes an effective method for observ-
ing, monitoring and characterizing the dynamism of dry-
lands [17]. One of the biggest challenge in this type of
studies is the identification of common desertification in-
dicators, since different ways of interpreting analogous
factors can bring to different results [17, 18]. Several indi-
cators have been proposed in literature, considering in
particular the soil reflectance contribution and the vegeta-
tive mass, whose deterioration can be a good indicator of
desertification, being the major biological production of
desert areas [19]. In particular different authors used indi-
cators of: land degradation (soil erosion, soil salinization
[20]), land use changes (expansion of agricultural or urban
areas), bare soil expansion, drought and changing vegeta-
tion (perennial plant cover and biomass) [15, 17, 18]. The
usage of the change detection techniques commonly used
for vegetated areas, requires though some care in applica-
tions to desert areas: since vegetative cover is low, the re-
flectance of the exposed soil surface highly influences the
pixels value [17, 21]. On the other hand, drylands have ad-
vantageous weather characteristics for change detection
studies, exhibiting dry and cloudless conditions which
remain unchanged for a long part of the year. These are
ideal for change detection studies, both on a short (sea-
sonal) and long (years) scale, solving the issue connected
with the atmospheric correction, a basic prerequisite for
change detection studies [1].

The aim of the research is to reduce the weakness of un-
supervised techniques, mainly absence of ground truth in-
formation, by the joint use of two of these techniques in a
hybrid approach, thus introducing a new and reproducible
change detection procedure. In specific, the effectiveness
of a combination of CVA and MAD/MAF is investigated
in change detection studies in arid and semi-arid areas,
naturally prone to desertification processes.

The research was conducted using Geospatial Free and
Open Source Software (GFOSS). The use of GFOSS
allowed to implement unavailable techniques and to
adapt existing ones to the needs of the research. Several
OSGEO (Open Source GEOspatial Foundation) prod-
ucts, namely Grass GIS, QGIS and Orfeo Toolbox, were
used through user’s specified scripts in BASH and Py-
thon. For the aim of this research, a new addon for
Grass GIS performing CVA was also implemented.

Page 3 of 12

Methods

Landsat data

To carry out the research, two case studies have been
chosen in arid and semi-arid areas following the Koppen
climate map [22], where arid areas (BW) and semi-arid
areas (BS) are defined based on a combination of mean
annual precipitation and mean annual temperature.

The first case study is Al Azraq Oasis, in Jordan. The
Oasis is located in the hot desert Badia region, 90 km
East of the capital Amman and was subject in the early
90s to a rapid drying out of the water springs due to
overexploitation of the groundwater [23, 24].

The second case study is the lake originated by the
South Hasakah Dam, in North East Syria, built 25 km
South of Al Hasakah in the late 90s on the Khabur River,
tributary of the Euphrates River. This reservoir is located
in a very fertile rural area (so called Syrian bread basket)
which has historically been highly exploited for the sur-
face and groundwater resources [25, 26].

The two sites, which locations are shown in Fig. 1, are
characteristic of desert environment and present water
bodies and vegetated areas, mainly agricultural. In the case
of Al Azraq, the area surrounding the Oasis shows also
natural vegetation growing around the water sources.

For Al Azraq Oasis the information on the ground
were given by historical maps, aerial photographies and
personal communications collected during a field visit as
discussed previously by the authors [23]. Furthermore,
this previous study included a change detection analysis
using some of the same techniques (CVA, TCT), and so
the confrontation with the new methodology was direct.

Several Landsat satellites images were chosen before
and after the 90s to assess the expected change in the
two areas: in the first case the drying out of the Oasis
and in the second case the appearance of the Lake. In
order to reduce dissimilarities in the atmospheric and
weather conditions in situ, the criteria for the choice of
the images were based on similar acquisition date and
summer season. Therefore images in the end of August
1984 and August 2015 were selected for the change
detection analysis. The chosen images are listed in
Table 1, alongside the denomination that will be used to
refer to them in the rest of the paper. Table 2 lists the
characteristic of the two used Landsat satellites sensors,
Landsat 5 Thematic Mapper (TM) and Landsat 8 Oper-
ational Land Imager (OLI). Only the spectral bands used
in the research are shown.

The Tasselled Cap Transform (TCT) and Change Vector
Analysis (CVA)

TCT was developed by Kauth and Thomas [27] for
Landsat 5 MSS sensor DN data. It owes its name to the
particular shape they recognized in the bands space for
the development of the pixels’ values, considering the
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Fig. 1 Location of the two case studies (grey stars) in Syria and in Jordan in the Middle East region

life cycle of some crops in a rural area in Illinois, USA.
The idea of TCT is to linearly transform through a set
of coefficients the pixels’ values in the original bands
(normally highly correlated) to a new set of bands, that
are orthonormal. The new bands are called features and
have been originally developed in order to have a mean-
ing in terms of different surface covers. For this reason
the TCT is image independent and can be applied to dif-
ferent images, provided that the coefficients have been
calculated for that type of satellite and data (raw digital
number, Top Of Atmosphere Reflectance - TOAR, etc).
TCT features’ meaning is connected with characteristics
such as: soil reflectance (first feature, called Brightness),
vegetation (second feature, Greenness), wet areas (third
feature, Wetness). Further features that can be retrieved
with TCT, which are in fact as many as the initial bands,
have been interpreted in different studies in several
ways, so their meaning is not univocal [28, 29].

The first TCT features, Brightness and Greenness, are
commonly used as input for the CVA [10, 11], as sug-
gested by Malila itself [8], who developed it in 1980. Fur-
ther studies used also the third feature, Wetness, for a

Table 1 Selected dates for Landsat 5 and Landsat 8 satellites for
the multitemporal change detection

Date Satellite Path/row Denomination
1984/08/30 Landsat 5 173/38 Oasis 1984
1984/09/01 Landsat 5 171/35 Lake 1984
2015/08/20 Landsat 8 173/38 Oasis 2015
2015/08/22 Landsat 8 171/35 Lake 2015

three dimensional CVA [9, 30], but for the aim of the re-
search this option wasn’t considered in the present
study. In fact the canonical bi-dimensional CVA, applied
to two spectral bands (or features) indicative of soil re-
flectance and vegetative conditions, as is the case of
Brightness and Greenness, is effective in detecting
changes towards drier or wetter conditions and can be
used also in desert areas applications [17, 23, 31, 32].
CVA’s concept is rather simple: it uses basic geomet-
rical calculations to derive the change occurred to the
value of a pixel in two (or more) spectral bands or
spectral characteristics between two dates. In the bands
space, plotting the values of the pixel in two different
dates generates a vector, whose length and angle give
the magnitude and direction of the change, respectively
(see Fig. 2). The output of the CVA are two maps: the
angle map bears a meaning in terms of change to the

Table 2 Technical data of selected spectral bands used in the
research for the Landsat 5 satellite TM (Thematic Mapper) and
Landsat 8 satellite OLI (Operational Land Imager) sensors, with
resolution of 30 m

Landsat 5 T™M Landsat 8 ETM+

Denomination band# range (um) band# range (um)
Blue 1 045-051 2 045 - 052
Green 2 052-060 3 053 - 0.59
Red 3 063 -069 4 0.64 - 0.67
Near Infrared - NIR 4 076 -090 5 0.85-0.88
Shortwave Infrared — SWIRT 5 155-175 6 1.57 = 1.65
Shortwave Infrared — SWIR2 7 208 -235 7 211 -229
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Fig. 2 CVA: meaning of the direction of the change for the four
quadrants in the Brightness-Greenness space, considering the
vector between two dates. The colors that will be used later on
for the classification are also shown

surface characteristics, while the magnitude map gives
the amount of the change occurred. The significant
change is given by a threshold on the magnitude map,
whereas the semantic interpretation is given by the
combination of the specific spectral bands or features
chosen. In our research we used as a threshold the
average of the magnitude values plus the standard devi-
ation, as in other sources [33]. In this way the value has
a statistical meaning and the technique can be repro-
duced by other researchers.

Common choices for the spectral features or bands are
in abscissa an indicator of the soil reflectance and in or-
dinate an indicator of the vegetation vigor. With this
choice, the meaning of CVA is provided by four classes
given by the four quadrants (0°-90°, 90°-180°, 180°—
270°, 270°-360°) in the bands space, as shown in Fig. 2.
In literature, Albedo and NDVI (Normalized Difference
Vegetation Index) [34] or the Tasselled Cap features
Brightness and Greenness [8] have been used for this
purpose. The first quadrant (between 0° and 90°) is indi-
cative of a change towards moisture reduction and in
desert areas has been found connected with a change to-
wards salty surfaces, i.e. drying lakes [34]; the fourth
quadrant (270°-360°), with increasing Brightness and de-
creasing Greenness, is also connected to a change to-
wards drier conditions, namely towards bare soil/sand
expansion and deforestation. The other two quadrants,
with decreasing Brightness, are connected with changes
towards more wet conditions: the second one (90°-180°)
with changes towards chlorophyll increase and forest
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regeneration, and the third (180°-270°) with changes to-
wards higher moisture land and water [23, 31]. Notice
that CVA gives just a direction of the change, meaning
there’s no classification of the actual cover types present
on the Earth surface. For example, water becoming soil
and soil becoming dryer will look the same in the output
map (change towards moisture reduction).

TCT coefficients, despite being image independent, are
affected by the type of terrestrial surface they've been cal-
culated for, therefore their application to a different type
of region might be not appropriate and can affect the re-
sults of a multi-temporal analysis [3, 29, 35, 36]. For this
work, two sets of desert-adapted TCT for Landsat TOAR
data were used. The coefficients are taken from Zanchetta
et al. for Landsat 5 [29] and for Landsat 8 [23]. The choice
of TOAR data relies on the possibility of comparing the
results with TCTs existing in literature for Landsat satel-
lites. Moreover, as pointed out by [27, 37] the use of the
TC transform calculated for raw DN data can be not
appropriate in change detection studies, being image af-
fected [35], and the use of coefficients calculated for
TOAR images is preferable [37].

Multivariate Alteration Detector (MAD) and Maximum
Autocorrelation Factor (MAF)

MAD is a broadly used technique of images linear trans-
formation based on Canonical Correlation Analysis
(CCA). It was developed by Nielsen in 1998 [12] in
order to improve the simple image differencing tech-
nique by “making the images as similar (correlated) as
possible, before taking their difference”. For this pur-
pose, Nielsen suggests to use standard CCA, as de-
scribed by Hotelling in 1936 [38]. CCA finds two sets of
linear combinations of the original variables, where the
first two linear combinations (called canonical variates)
are the ones with the largest correlation (called first ca-
nonical correlation). The second canonical correlation
and canonical variates are determined subject to the
condition that they are orthogonal to the first ones, and
this process goes on for the higher-order canonical cor-
relations and variates. Performing differences between
these pairs of variates allows then to consider a change
detection analysis based on linear combinations of the
original variables, ordered by correlation (similarity) be-
tween pairs [12].

For N input bands MAD gives N output difference
images, called MAD components. The MAD; compo-
nent corresponds then to i-th difference bearing the
maximum variance between two sets of variables that
are positively correlated. Each MAD represents a differ-
ent type of change, supposing that similar types of
spatial change will be grouped in one component, since
each of them is found under the constraint of being un-
correlated with the preceding one [39].
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MAF was firstly applied by Nielsen et al. [12] to the
MAD components in order to retain the spatial context
of the data in the change detection results. In fact
MAD components fail to consider the overall spatial
coherence of the change, taking into account only local
(single pixel) analysis. MAF transform was introduced
by Switzer and Green [14] to isolate the noise compo-
nent of the data, transforming a set of original mea-
surements to a new set of variates where low order
variates have maximal spatial autocorrelation, mainly
signal, and the highest order variates have minimal
spatial autocorrelation, mainly noise.

As such, MAF transformation is a form of Minimum
Noise Fraction (MNF) procedure that generates com-
ponents with maximum Signal to Noise Ratio (SNR):
assuming that the noise is derived from the evaluation
of the difference between values of neighboring pixels,
the first MAF component will exhibit maximum auto-
correlation, identified as areas with maximum change,
while the noise is expected to be present in lower order
components [13].

The first component (MAF1) is the linear combin-
ation of the variables that maximizes autocorrelation,
the second one (MAF2) is the same type of linear com-
bination with the condition that it is orthogonal to
MAF1, and so on, up to the last components, whose
number equals the number of initial variables. A
complete description of the MAF transformation re-
trieval is available in [14].

MAF components, like MAD components, are invari-
ant to linear scaling of the input data and can therefore
be applied equally on raw data as well as on trans-
formed images. In this research they have been used on
TOAR data.

In order to get a value for the significant change, a
threshold can be applied to the MAD/MAFs. Since the
MADi and MAD/MAF variates are approximately nor-
mally distributed about zero and uncorrelated, a good
candidate for the thresholding is in terms of standard
deviations about the mean for each component. In this
sense, all the pixels whose intensities are within + No of
zero are considered unchanged. A usual choice for the
threshold is taking values lower and higher than two
standard deviations +2¢ from the mean [13, 40, 41].
The threshold criterion though is not univocal and
more sophisticated criteria based on statistical analysis,
like Bayes Rule of Minimum Error [42, 43] and Spectral
Mixture Analysis (SMA) [13], have been introduced.
For the aim of this study, and missing ground truth
data necessary for the SMA, the basic +2¢ threshold
was chosen.

As pointed out by other authors [7, 40], MAD results
contain a high degree of detail, but don’t give a uni-
vocal possibility for the semantic interpretation.
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Therefore, the use of a combined procedure can be a
good solution to help in understanding the meaning of
the change found by MAD.

Data processing

The images for both 1984 and 2015 have been processed
in Grass GIS using two different regions around the Azraq
Oasis and the South Hasakah Lake (see Figs. 3a and 4a for
1984, and 3B and 4B for 2015 images). The raw DN im-
ages were firstly transformed to TOAR data with i.land-
sat.toar, and then to TCT features. The transformation of
the TOAR images to TCT features is carried out through
Grass GIS BASH scripts encompassing the desert-specific
coefficients.

CVA is then performed through a new add-on,
i.cva, available for Grass GIS 7.0.x and developed by
the author. i.cva gives as output three images, one of
the CVA magnitude and two of the CVA angle (one
unclassified and one classified by the four quadrants)
between two dates. A threshold can also be specified,
either by a statistical criterion (number of standard
deviation to be summed to the average) or by a cus-
tomary value. In the case a threshold is set, icva
gives as output also a map of the final change, given
by the classified pixels whose value exceeds the
threshold for the magnitude.

For this study, i.cva was run on the Brightness (in ab-
scissa) and Greenness (in ordinate) maps for both
dates, taking as a threshold one standard deviation. The
outputs of CVA are shown in Figs. 3c, d, e and 4c, d, e
separately for the two case studies, where the angle,
magnitude and the final change maps are given.

In parallel, MAD/MAF analysis between the 1984 and
2015 images was performed in QGIS on the same areas,
using the bands listed in Table 2, to respect the spectral
correspondence between the pairs of bands from each
satellite. MAD and MAF transformations can be per-
formed in GFOSS using Orfeo Toolbox, available in
QGIS environment via the Processing Toolbox. The sub-
sequent processing of the images was conducted in
Grass GIS.

Results and discussion

The research passed through several combinations and
tested them on the Oasis case, prior to extensively test-
ing the chosen methodology. Hence an application on
the Lake case was carried out.

As a first attempt, a combination of CVA and MAD
was considered. The first step was the comparison of
several RGB combinations of MAD components in
QGIS, in order to select the ones that visually detect the
expected change on the surface (Fig. 3f), as commonly
performed in MAD application studies. The components
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Fig. 3 Processing of the images for the combined procedure for Al Azrag Qasis. a. RGB composition of Landsat 5 image for 1984; b. RGB
composition of Landsat 8 image for 2015; ¢. CVA classified angle map; d. CVA magnitude map; e. CVA final change map; f. RGB MAD map
(components 1,5,6); g. MAD component 5 thresholded and classified map; h. RGB MAF map (variates 1,2,3); i. MAF variate 1 thresholded and
reclassified map; j. Final change map. The legend for all the CVA maps is shown below

1, 5 and 6 were selected, and then imported in Grass
GIS where the +20 threshold was applied to each of the
three MAD components, giving in output a map of posi-
tive and negative values beyond the threshold.

At this point, a visual correspondence was noticed
between the CVA results and the thresholded MAD
image, where the positive values are generally corre-
lated with the first and forth quadrant (therefore
positive Brightness) of the CVA, while the negative
values are correlated with the second and third CVA

quadrant (therefore negative Brightness). To make
this more clear, a new map was created with only
two raster categories, grouping all positive values to
one and all negative to another (see Fig. 3g for the
component 5 as an example). To quantify the similar-
ity between the maps, analogous to visually overlap-
ping the maps, the Grass GIS r.cross module was
used, between CVA and two components of MAD.
r.cross creates an output raster map representing all
unique combinations of category values in the input
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Fig. 4 Processing of the images for the combined procedure for South Hasakah Lake. a. RGB composition of Landsat 5 image for 1984; b. RGB
composition of Landsat 8 image for 2015; ¢. CVA classified angle map; d. CVA magnitude map; e. CVA final change map; f. RGB MAD map
(components 1,5,6); 9. MAD component 5 thresholded and classified map; h. RGB MAF map (variates 1,2,3); i. MAF variate 1 thresholded and
reclassified map; j. Final change map. The legend for all the CVA maps is shown below
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rasters,’ and outputs also a table summarizing the oc-
curring categories. The number of possible combina-
tions (not shown here) was still large, and their
interpretation was not straightforward.

With reproducibility in mind then, the combination MAD-
CVA is not satisfying, as it depends on the choice of the number
and orders of the significant MAD components, that can differ
from case to case. Moreover, the high amount of unique combi-
nations between the MAD and CVA classes leaves a complex
classification, rather than an easy-to-interpret change map.

Next, the option of the transformation to MAF variates
was considered. Like with MAD components, the results
contained a high degree of detail, but the meaning of the
change was not yet clear (Fig. 3h). The first MAF variate
(MAF1), which was imported in Grass GIS and visually
compared with the CVA change map, showed a high spatial
agreement. It was therefore taken as the only input for the
combined methodology. Higher order MAF variates are not
shown here but mostly contained noise, as expected.

Like done with MAD, the MAF1 was subsequently
thresholded, considering values higher and lower than
120, and then reduced to a binary valued map grouping
positive and negative values (see Fig. 3i). The selection
of a single variate as an input alongside the CVA map
to r.cross, reduced the number of unique combinations,
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and now the meaning of the CVA classes could be
simply attributed to the MAF1 values. The r.cross cat-
egories (in terms of percentage and number of pixels)
are shown in Table 3, where the semantic interpretation
is retained from the CVA categories (as seen in Fig. 2).

In terms of surface cover, the CVA detects more chan-
ged pixels, with an extension up to two or three times
more than MAF in some specific classes (see the Bare soil
and bare sand expansion class, with more than 5% pixels
undetected from MAF, out of 6.93% of the CVA). On the
other hand, pixels identified by MAF, but not considered
from CVA, cover in total only 0.58% of the Oasis area.

A comparison with the results of a previous CVA change
detection analysis, carried out in the same study area and in
the same time interval with similar conditions [23], was visu-
ally performed. The major difference between the use of the
CVA alone and its use combined with MAF is given by the
lesser spatial extent of the detected change, as shown by the
results in Table 3. The change classes are correctly detected,
but CVA tends to overestimate the change, detecting wider
areas, especially in the bare soil expansion class (see North-
western and Western part of the study area). The combined
technique shows more precise identification of the surface ele-
ments who changed, in particular the pools and ditches on the
East side of the Oasis who went through a drying out process.

Table 3 Results of Grass GIS r.cross module between CVA map and MAF map (first component thresholded and classified for
negative and positive values) in terms of pixels count and percentage over the study area for both case studies

Oasis Lake
reross CVA classes MAF] Pixels count % Pixels count %
categories values
1 No data Negative 990 0.31 1043 0.19
2 Positive 857 0.27 200 0.04
3 1°" quadrant (Moisture reduction) No data 685 021 143 0.03
4 Negative 39 0.01 182 0.03
5 Positive . .. 1 0.00
6 ond quadrant (Chlorophyll increase) No data 5551 173 2808 052
7 Negative
8 Positive 8427 263 7406 137
9 3 quadrant (Higher moisture land and water bodies) No data 1420 0.44 17215 3.19
10 Negative
11 Positive 390 0.12 9882 1.83
12 4t quadrant (Bare soil and bare sand expansion) No data 16172 5.05 3645 0.68
13 Negative 6015 1.88 22480 416
14 Positive
15 No data No data 279454 87.33 474995 87.96
Total 320000 100 540000 100
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The high correspondence of the CVA and MAF results,
together with the improvement in the CVA spatial detec-
tion, induce to propose the combination of the two tech-
niques as a new methodology for change detection studies,
where CVA gives the semantic interpretation and MAF the
spatial extent of the change (Fig. 3j).

Considering the new methodology valid, an application
to the second case study was implemented, in order to
evaluate an antithetical situation, of water replenishment
in a semi-arid area. The steps performed in the Oasis case
were repeated in the second case, as shown in Fig. 4 c-j.
Also in this case, the MAD components 1,5 and 6 were
chosen for the analysis, but the MAD and CVA combin-
ation showed the same weak points seen before. The
MAF1 visually exhibited a high spatial correspondence
and the Grass GIS r.cross module was applied, giving the
results shown in Table 3. The possible combinations were
the same seen for the Oasis case, with one stray pixel
matching the first CVA quadrant with the positive MAF1.
Like in the Oasis case, MAF results are almost entirely
overlapped by CVA, with a missed detection of just 0.23%
of the image (compared to the 0.58% of the Oasis area).

A visual interpretation of the results indicates that the
combined methodology finds the abandonment of the
fields areas South of the dam along the river banks, and
again the MAF reduces the spatial extent of the CVA bare
soil expansion class. The expected occurrence of a new
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vast water basin upstream the dam in the North is also
correctly detected. However the MAD/MAF contribution
eliminates from the change map the central part of the
basin, that was correctly detected by CVA (3.19% of pixels,
belonging to the Higher moisture land and water bodies,
not detected by MAF). This issue could be possibly solved
if considering higher order MAF variates, and this could
be discussed in further work.

Summarizing, the MAD/MAF finds an equivalent
change to the CVA and at the same time the CVA allows
the physical interpretation of MAD/MAF technique. This
gives a new perspective for the use of MAD/MAEF, since in
other cases found in literature the interpretation of the re-
sults is always dependent on the image considered as a
case study. The research shows that the use of the two un-
supervised techniques in a hybrid approach allows an im-
provement in understanding the results of both.

For clarification on the performed steps, the pro-
posed workflow for the combined methodology is dis-
played in Fig. 5.

Conclusions

A combination of two pixel-based unsupervised change
detection techniques for desertification studies was an-
alyzed, taking as case studies two areas in the Middle
East region. The first, Al Azraq Oasis, was chosen as a
representative of drying conditions, while the second
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one, South Hasakah Lake, was considered for water
bodies replenishment.

A first attempt to combine two change detection tech-
niques was carried out using Change Vector Analysis
(CVA) applied to the Tasselled Cap Transform (TCT) fea-
tures combined with the output of Multivariate Alteration
Detector (MAD) analysis. The results, applied to Landsat
images between 1984 and 2015, were positive but not sat-
isfying, due to the nature of the MAD components,
where the noise is spread among the bands, and to the
difficulty in overlapping the many categories given from
the two techniques together.

A second approach took into account the Maximum
Autocorrelation Factor (MAF) transformation of the
MAD components, that groups the images differences,
called variates, by decreasing autocorrelation. In this
case, one single variate was chosen and combined with
the CVA output.

The results of the application to a case previously an-
alyzed by the authors, Al Azraq Oasis, show that the
two techniques can be successfully used in a combined
way because they give complementary information:
while CVA gives a meaning of the surface change, MAF
gives a slightly more detailed map of the change on the
surface. In this sense, the first MAF variate, appropri-
ately thresholded, can be used like a first step for the
identification of the changed features, while a second
step is taken assigning a meaning to the features by the
CVA semantic classification. This procedure is corrob-
orated by the high correspondence between the change
found by the individual techniques: once thresholded
and reclassified, MAF positive values match with the
first and fourth CVA classes, indicative of changes to-
wards drier conditions, while MAF negative values cor-
respond to the second and third classes of CVA,
indicative of changes towards more wet and vegetated
conditions.

The results are validated through the comparison
with a previous research applying CVA on its own to
the same study area surrounding Al Azraq Oasis. The
combined methodology detects the expected change
on the surface, namely the shrinking of the Oasis and
the development of new rural areas, but the MAD/
MAEF contributes by more precisely delineating the
changed areas. The combined methodology therefore
is a conservative procedure, since it excludes a small
percentage of pixels from each technique, thus allow-
ing to exclude over-estimation of the change.

Extending the results to the second case study, the ex-
pected visual superficial change is again detected by the
combined methodology, namely the replenishment of
water in the Lake and the loss of cultivated areas along
the river. Missing ground truth data, though, an accurate
validation of the results can’t really be performed in this
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case. Only the correspondence with the results obtained
for Al Azraq Oasis can give some positive feedback
about the methodology, beside the fact that the visual
change on the surface is correctly identified.

An important output of the research is the improve-
ment in the use of MAD/MAF technique in change de-
tection studies. Previously, the interpretation of the
MAD/MAF was not straight-forward and in general re-
lied on the single researcher’s choices. The research has
showed how using a statistical criteria for the threshold
determination, and relying on the correspondence be-
tween the results of CVA and MAF’s first component,
the combined technology provides an almost auto-
mated, time effective and reproducible technique. As
such, it can be used as either a complementary proced-
ure or a first interpretation step in change detection
studies. The fast detection can be used for example to
perform a preliminary selection of relevant time inter-
vals, on which to perform more accurate change studies
with the support of ground data. The methodology then
has been found effective for desertification studies in
arid and semi-arid areas, detecting the expected change
on the surface.

A limitation of the methodology could be given by the
choice of the threshold applied to both techniques, that
relies on the researcher. Another weak point is that the
method has been employed just in a restricted number of
cases and could be tested in other geographical regions.
Future works can be considered in order to validate the
technique, both by verification of the results against
ground truth data and by comparing them with other
change detection techniques. The implementation of
higher order MAF variates could also be taken into
account, for a complete investigation of the technique.

An added value of the research is the integration of a
CVA calculation module into the Free and Open Source
Software (FOSS) project Grass GIS, making the imple-
mentation of the technique available to future users.

Endnote
"https://grass.osgeo.org/grass72/manuals/r.cross.html

Authors’ contributions

AZ conceived the idea of the new methodology, carried out the research
and wrote the manuscript. GB supervised the process as her guiding PhD
professor. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://grass.osgeo.org/grass72/manuals/r.cross.html

Zanchetta and Bitelli Open Geospatial Data, Software and Standards (2017) 2:10

Received: 7 December 2016 Accepted: 5 April 2017
Published online: 24 April 2017

References

1.

20.

21.

22.

23.

Singh A. Digital change detection techniques using remotely-sensed data.
Int J Remote Sens. 1989;10:989-1003.

Coppin P, Lambin EF, Jonckheere I, Muys B. Digital change detection
methods in natural ecosystem monitoring: a review. Int J Remote Sens.
2004;25:1565-96.

Lu D, Mausel P, Brondizio E, Moran E. Change detection techniques. Int J
Remote Sens [Internet]. 2003;25:2365-401. Available from: http:/www.
informaworld.com/10.1080/0143116031000139863.

Blaschke T. Object based image analysis for remote sensing. ISPRS J
Photogramm Remote Sens [Internet]. 2010;65:2-16. Available from: http://
dx.doi.org/10.1016/j.isprsjprs.2009.06.004.

Eastman JR. Change and time series analysis techniques: a review. 1992. p. 1-28.
Sui H, Zhou Q, Gong J, Ma G. Processing of multitemporal data and change
detection. In: Chen L, Baltsavias Q, editors. Adv. Photogramm. Remote Sens. Spat.
Inf. Sci. 2008 ISPRS Congr. B. London: Taylor & Francis Group; 2008. p. 227-47.
Nussbaum S, Menz G. Object-Based Image Analysis and Treaty Verification,
New Approaches in Remote Sensing - Applied to Nuclear Facilities in Iran,
Edited by S. Nussbaum and G. Menz. Berlin: Springer Science + Business
Media B.V; 2008. ISBN: 978-1-4020-6960-4.

Malila WA, Lafayette W. Change Vector Analysis : An Approach for Detecting
Forest Changes with Landsat. LARS Symp - Purdue University Purdue e-
Pubs [Internet]. 1980;385:326-35. Available from: http://docs.lib.purdue.edu/
lars_symp/385.

Flores SE, Yool SR. Sensitivity of change vector analysis to land cover
change in an arid ecosystem. Int J Remote Sens [Internet]. 2007;28:1069-88.
Available from: http://www.tandfonline.com/doi/abs/10.1080/
01431160600868482.

Singh A, Garg PK, Singh S. A Change Vector Analysis Technique for
Monitoring of Vegetation Regeneration and Deforestation. Int J Adv Sci
Tech Res. 2012,4:329-41.

Siwe RN, Koch B. Change vector analysis to categorise land cover change
processes using the tasselled cap as biophysical indicator. Environ Monit
Assess [Internet]. 2008;145:227-35. Available from: http://www.ncbi.nim.nih.
gov/pubmed/18193332.

Nielsen AA, Conradsen K, Simpson JJ. Multivariate Alteration Detection (MAD)
and MAF Postprocessing in Multispectral, Bitemporal Image Data : New
Approaches to Change Detection Studies. Remote Sens Environ. 1998,64:1-19.
Canty MJ. Image Analysis, Classification and Change Detection in Remote
Sensing. Boca Raton: CRC Press, Taylor & Francis Group; 2014. Third Edition.
ISBN13: 13: 978-1-4665-7038-2.

Switzer P, Green AA. Min/Max Autocorrelation Factors For Multivariate
Spatial Imagery. Department of Statistics, Stanford University: National
Science Foundation [Internet]. 1984;6. Available at: https://statistics.stanford.
edu/sites/default/files/SWI%20NSF%2006.pdf.

Pannenbecker A. Identification of Desertification Indicators Using
Bi-Temporal Change detection. In: Braun M, editor. Second Work. EARSeL
Spec. Interes. Gr. L. Use L. Cover — Proc. 2006.

Nori WTM. Detection of land cover changes in EI Rawashda forest, Sudan :
A systematic comparison. 2012.

Dawelbait MAA, Morari F. LANDSAT, Spetral Mixture Analysis and Change
Vector Analysis to Monitor Land Cover Degradation in a Savanna Region in
Sudan (1987-1999-2008). Int J Water Resour Arid Environ. 2011;1:366-77.
Albalawi EK, Kumar L. Using remote sensing technology to detect, model
and map desertification: A review. J Food, Agric Environ. 2013;11:791-7.
Shafie H, Seyed MH, Amiri I. Assessment of desertification trends in Sistan
Plain, Iran using Rs and GIS. Int J For Soil Eros. 2012;2:97-100.

Metternicht Gl, Zinck JA. Remote sensing of soil salinity: Potentials and
constraints. Remote Sens Environ. 2003;85:1-20.

Huete AR, Jackson RD, Post DF. Spectral response of a plant canopy with different
soil backgrounds. Remote Sens Environ [Internet]. 1985;17:37-53. Available from:
https//www.sciencedirect.com/science/article/pii/0034425785901117.

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Koppen-Geiger
climate classification. Meteorol Zeitschrift. 2007;15:439-73.

Zanchetta A, Bitelli G, Karnieli A. Monitoring desertification by remote
sensing using the Tasselled Cap transform for long-term change detection.
Nat Hazards. 2016;83:5223-227. Springer Netherlands.

24.

25.

26.

27.

28.

29.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

Page 12 of 12

Ramsar Convention. Jordan National Report, 7th Meeting of the Conference
of the Contracting Parties to the Convention on Wetlands (Ramsar, Iran,
1971). San José: Ramsar Convention; 1999.

Nguyen H. Agricultural Planning Policy and Variability in Syrian Cereal
Production. In: Anderson JR, Hazell PBR, editors. Var. Grain Yields. Baltimore:
The Johns Hopkins University Press; 1986. p. 78-90.

Hole F. Drivers of unsustainable land use in the Semi-Arid Khabur River
Basin. Syria Geogr Res. 2009;47:4-14.

Kauth RJ, Thomas GS. The tasselled cap - A graphic description of the
spectral-temporal development of agricultural crops as seen by Landsat.
Proc. Symp. Mach. Process. Remote, Sensed Data, West Lafayette, Indiana, U.
S.A, 29 June-1 July 1976. 1976. p. 41-51.

Crist EP, Cicone RC. A Physically-Based Transformation of Thematic Mapper
Data—The TM Tasseled Cap. IEEE Trans Geosci Remote Sens. 1984,GE-22:256-63.
Zanchetta A, Bitelli G, Karnieli A. Tasselled Cap transform for change
detection in the drylands: findings for SPOT and Landsat satellites with
FOSS tools. In: Hadjimitsis DG, Themistocleous K, Michaelides S, Papadavid
G, editors. Proc. SPIE 9535, Third Int. Conf. Remote Sens. Geoinf. Environ.
[Internet]. 2015. Available from: http://proceedings.spiedigitallibrary.org/
proceeding.aspx?doi=10.1117/12.2192597.

Bovolo F, Bruzzone L. A novel theoretical framework for unsupervised
change detection based on CVA in polar domain. Int Geosci Remote Sens
Symp. 2006;45:379-82.

Lorena RB, dos Santos JR, Shimabukuro YE, Brown IF, Kux HJH. A change
vector analysis technique to monitor land use/land cover in sw brazilian
amazon: acre state. ISPRS Arch [Internet]. 2002;XXXIV:8. Available from:
http://www.isprs.org/proceedings/XXXIV/part1/paper/00014.pdf.

Bayarjargal Y, Karnieli A, Bayasgalan M, Khudulmur S, Gandush C, Tucker C. A
comparative study of NOAA-AVHRR derived drought indices using change
vector analysis. Remote Sens Environ [Internet]. 2006;105:9-22. Available
from: http//linkinghub.elsevier.com/retrieve/pii/S0034425706002185.

He C, Zhao Y, Tian J, Shi P, Huang Q. Improving change vector analysis by
cross-correlogram spectral matching for accurate detection of land-cover
conversion. Int J Remote Sens. 2013;34:1127-45.

Karnieli A, Qin Z, Wu B, Panov N, Yan F. Spatio-Temporal Dynamics of
Land-Use and Land-Cover in the Mu Us Sandy Land, China, Using the
Change Vector Analysis Technique. Remote Sens [Internet]. 2014;6:9316-
39. Available from: http://www.mdpi.com/2072-4292/6/10/9316/.

Ivits E, Lamb A, Langar F, Hemphill S, Koch BS. Orthogonal Transformation of
Segmented SPOT IMages: Seasonal and Geographical Dependence of the
Tasselled Cap Parameters. Photogramm Eng Remote Sens. 2008;74:1351-64.
Yarbrough LD, Easson G, Kuszmaul JS. Proposed workflow for improved
Kauth-Thomas transform derivations. Remote Sens Environ [Internet].
2012;124:810-8. Available from: http://dx.doi.org/10.1016/j.rse.2012.05.003.
Huang C, Wylie B, Yang L, Homer C, Zylstra G. Derivation of a tasselled cap
transformation based on Landsat 7 at-satellite reflectance. Int J Remote
Sens. 2002;23:1741-8.

Hotelling H. Relations Between Two Sets of Variates. Biometrika. 1936;28:
321-77. Available from: http://www jstor.org/stable/2333955.

Nori W, Elsiddig EN, Niemeyer I. Detection of land cover changes using
multi-temporal satellite. Int Arch Photogramm Remote Sens Spat Inf Sci.
2008;XXXVII:947-52.

De B-b B, Lépez-caloca AA, Investigacion D, Ing G, Tamayo JL. Tropical Dry
Forests in the Global Picture : The Challenge of Remote Sensing-Based
Change Detection in Tropical Dry Environments. In: Carayannis E, editor.
Planet Earth 2011 — Glob. Warm. Challenges Oppor. Policy Pract. InTech.
2011, p. 231-56.

Canty MJ, Nielsen AA. Visualization and unsupervised classification of changes
in multispectral satellite imagery. Int J Remote Sens. 2006,27:3961-75.
Bruzzone L, Prieto DF. Automatic Analysis of the Difference Image for
Unsupervised Change Detection. IEEE Geosci Remote Sens. 2000,38:1171-82.
Zhang L, Liao M, Yang L, Lin H. Remote Sensing Change Detection Based on
Canonical Correlation Analysis and Contextual Bayes Decision. 2007. p. 311-8.


http://www.informaworld.com/10.1080/0143116031000139863
http://www.informaworld.com/10.1080/0143116031000139863
http://docs.lib.purdue.edu/lars_symp/385
http://docs.lib.purdue.edu/lars_symp/385
http://www.tandfonline.com/doi/abs/10.1080/01431160600868482
http://www.tandfonline.com/doi/abs/10.1080/01431160600868482
http://www.ncbi.nlm.nih.gov/pubmed/18193332
http://www.ncbi.nlm.nih.gov/pubmed/18193332
https://statistics.stanford.edu/sites/default/files/SWI%20NSF%2006.pdf
https://statistics.stanford.edu/sites/default/files/SWI%20NSF%2006.pdf

	Abstract
	Background and Methods
	Results and Conclusions

	Background
	Methods
	Landsat data
	The Tasselled Cap Transform (TCT) and Change Vector Analysis (CVA)
	Multivariate Alteration Detector (MAD) and Maximum Autocorrelation Factor (MAF)
	Data processing

	Results and discussion
	Conclusions
	https://grass.osgeo.org/grass72/manuals/r.cross.html
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

