
Open Geospatial Data,
Software and Standards

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8
https://doi.org/10.1186/s40965-018-0051-x

SOFTWARE Open Access

Hypermap registry: an open source,
standards-based geospatial registry and
search platform
Paolo Corti1* , Benjamin Lewis1 and Athanasios Tom Kralidis2

Abstract

On the web there is a large number of useful geospatial datasets available, exposed via web map services using open
standards or open protocols. Just as web search engines enable users to reliably search and find relevant documents,
a similar capability is needed to return the most useful and reliable geospatial datasets.
Hypermap Registry is an open source platform, developed by the Center for Geographic Analysis (CGA) of Harvard
University, which attempts to address the general problem of geospatial data search and discovery.

Keywords: Catalogue, Data discovery, Geoportal, Interoperability, Metadata, OGC standards, Search engine, Spatial
data infrastructure

Introduction
Thousands of webmap services deployed using open stan-
dards and protocols, are being made available to the gen-
eral public, which consumes a large volume of geospatial
data across many disciplines and geographic areas. One
major challenge is to provide a way to discover and use
geospatial content from these services, which is accessible
by the general end user [1].
In the past the problem of web service discovery has

been addressed by primarily two approaches. The first
approach uses a centralized registry, which is updated
by the service providers [2]. The second approach uses
crawling algorithms which harvest search engine applica-
tion programming interfaces (APIs), such as the Google
search API, in order to obtain standard web map services
endpoints [1, 3, 4].
This research approaches the problem from a new per-

spective focusing on content relevance and reliability.
Metadata matches and content returned to a client query-
ing a registry should be: 1) relevant, using a ranked search
score; 2) reliable, with respect to the web service availabil-
ity. The registry should return quality content results to

*Correspondence: pcorti@fas.harvard.edu
1Center for Geographic Analysis, Harvard University, 1737 Cambridge Street,
K350, 02138 Cambridge, MA, USA
Full list of author information is available at the end of the article

end users from web services which have a good reputation
in respect of reliability.
In modern web sites, the problem of returning rele-

vant content results to end users is addressed by using
search engines frameworks. The open source information
retrieval software library Apache Lucene [5] is currently
used by a large number of web sites which require a pow-
erful full-text searching mechanism. The same approach
can be applied to return results from a registry of web
map services.
Reliability of web map services can be measured by

periodically querying remote map layers. Reliable web
map services are those with a high percentage of correct
responses to client requests. It is therefore important to
have a reliability indicator, which would help to identify
and optionally exclude low quality services from returned
results [6].
Hypermap Registry is a free and open source platform,

developed by the CGA of Harvard University, which tries
to address this general problem: return relevant content
from reliable web map services to users.
In this paper we first provide a description of the prob-

lem, which Hypermap aims to address. After a review
of the underlying technologies we provide a background
of the use cases for these technologies at Harvard CGA,
including a description of the architecture and the features
of the WorldMap platform and why we decided to design

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40965-018-0051-x&domain=pdf
http://orcid.org/0000-0002-5245-5133
mailto: pcorti@fas.harvard.edu
http://creativecommons.org/licenses/by/4.0/

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 2 of 12

and develop the Hypermap platform. We then discuss the
implementation and the architecture of Hypermap and
provide an overview of its benefits.We conclude the paper
with some plans we have for the future to extend our
research and the developed platform.

Background
HarvardWorldMap is an open source Geospatial Content
Management System (GeoCMS), containing a large num-
ber of geospatial datasets, which requires a framework to
return to end users the most relevant and reliable results.
In this section we will provide an overview onGeoCMSs

and their background problem domain and related tech-
nologies.

Geospatial content management systems
A Content Management System (CMS) is a web applica-
tion, which allows users to work within a collaborative
environment to create and update digital content. This
content can exist in a number of different forms (blog
posts, articles, images, videos etc) and it can be typically
created, reviewed and published by applying a revision
workflow and can be shared with other users and/or group
of users through a granular permission system. In the last
two decades a number of popular open source frame-
works have gained popularity: some notable ones in the
open source arena are Joomla, Drupal and Wordpress
(based on the PHP language); Liferay (based on the Java
language) and Plone and Django CMS (based on Python).
A different class of CMS, which we refer to as Data Con-

tent Management Systems (DCMS), is oriented toward
the storage and distribution of open data and their meta-
data. CKAN is an open source web-based management
system built on the Python/Pylons web framework, the
PostgreSQL database, and Solr for search. CKAN is used
by a number of public institutions to create data cata-
logues and registries, enabling users to share open data
and make them discoverable and presentable. Data.gov,
for example, is a United States government website built
with CKAN, which has been in operation since 2009, and
publishing open data at a national scale [7].
Another example for DCMS is Dataverse (built on

Java/Glassfish), an open source web application that
enables users to share, cite, explore and analyze research
data. Its development started in 2006 at the Institute for
Quantitative Social Science (IQSS) at Harvard University
[8]. A growing number of universities and organizations
around the world are running their own Dataverse repos-
itory instances.
Regarding the geospatial world, the focus of this paper,

there are a number of frameworks being used to imple-
ment open geospatial web platforms. GeoCMS are DCMS
which let the users create and update geospatial con-
tent and relative metadata. By using these frameworks it

is possible to deploy Spatial Data Infrastructures (SDI)
and/or geoportals.
A typical GeoCMS can provide users with some or all of

the following abilities:

• Upload vector and raster datasets (layers), or create a
vector dataset (layer) from scratch. Layers can be
stored in a spatial database and rendered with a map
rendering engine

• Create thematic styles for a layer
• Edit the metadata of a layer
• Edit the features of a vector layer
• Set appropriate granular permissions for a layer to a

user or a group of users. Permissions can be of
different types: for example a user can be enabled to
access and edit the metadata of a vector dataset, but
not enabled to edit its features and its styles

• Create web maps combining geospatial layers which
have been uploaded to the GeoCMS

• Provide interoperability with external clients using
standards and open protocols

• Harvest layers from external map services in order to
make them available to the GeoCMS users

GeoCMS can be developed as a spatial extension of
existing CMSs or as an independent framework which
focus mainly on the management of spatial information.
These systems are typically developed within a web frame-
work that uses a spatial database to store the data and a
map rendering engine to generate the map tiles.
Most of the open source GeoCMSs use PostgreSQL1

with PostGIS2 as spatial database and GeoServer3 or
MapServer4 as the map rendering engine.
A JavaScript mapping library is used to implement the

web maps, most common ones are OpenLayers5 and
Leaflet6.
More sophisticated GeoCMS can include in the stack a

map caching engine and a Catalogue Service for the Web
(CSW)7 instance.
One of the first GeoCMS frameworks was PrimaGIS

(beginning of 2000), built on the Plone CMS using
MapServer as a map rendering engine.
In the last decade the most widely adopted open source

GeoCMS implementations have been GeoNode8, Map-
bender9, Cartaro10 and GeoNetwork (which evolved from
a CSW implementation to a complete GeoCMS solu-
tion)11. CARTO (formerly CartoDB)12 is a powerful cloud
computing mapping platform. Its underlying source code,
based on JavaScript, Node.js and PostgreSQL/PostGIS, is
released as open source. There are however few CARTO
instances running other than the main commercial one
run by the CARTO company.
CKAN itself offers a number of geospatial features.

For example, a non-spatial dataset can be geo-indexed

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 3 of 12

and made it searchable by location by associating to it
a GeoJSON geometry. Spatial search is performed by
the spatial features of the CKAN search engine (Solr) or
alternatively using a PostGIS spatial database. CKAN pro-
vides a way to harvest external CSW servers (federation).
Thanks to the integration with pycsw, it can also provide a
fully compliant CSW interface for the harvested records.
By using a GeoCMS, which uses a full stack of com-

ponents (a spatial database, a map rendering engine, a
map caching engine, a CSW catalogue), it is possible to
implement an SDI and/or a solution for the storage and
distribution of open data.

Search engines
CMS first, and later GeoCMS and open data portals
started embedding a search engine in their architecture in
order to make content and data easily discoverable. The
most widely adopted open source search engine frame-
works are Solr13 and Elasticsearch14, both of which are
based on the Java Lucene15 search library. Search engine
technology provides fast scored results to end users and
includes features similar to web search engines such as
Google, Yahoo and Bing.
It is very common to pair a CMS with Solr or

Elasticsearch. GeoCMSs have adopted this trend as well:
in GeoNode, since the earliest versions, it has been pos-
sible to add Solr or Elasticsearch to the stack in order to
make content more easily discoverable.

Webmap services
On the web there is a large number of web map services
exposing much useful geospatial information using Open
Geospatial Consortium (OGC) standards or open proto-
cols. Some popular OGC standards are Web Map Service
(WMS) [9], Web Map Service Tile Caching (WMS-C)16,
Web Feature Service (WFS)17, Web Coverage Service
(WCS) [10], Catalogue Service for The Web (CSW). A
set of very widely used and powerful open protocols
are Esri ArcGIS Representational state transfer (REST)
MapServer, ImageServer and FeatureServer18.
Thanks to these standards and open protocols, a

tremendous volume of geospatial information can be
accessed by clients such as desktop platforms (QGIS,
gvSIG, GRASS GIS, Esri ArcGIS, etc...) and by web plat-
forms (GeoCMS and SDI) which can federate the services.
For example GeoNode allows users to register a remote
web map service in order to gain access to all of its pub-
lished layers. These layers can then be used and combined
with the native GeoNode layers to create web maps.

Harvard WorldMap
Since 2010 the CGA has been developing and maintain-
ing WorldMap [11]19, a GeoCMS and open data platform
that enables registered users to publish geospatial content

on the web. Users can upload geospatial vector and raster
datasets to the platform and combine them with exist-
ing datasets to create web maps. Existing datasets can be
data which other users have uploaded, or data exposed by
external web servers.
WorldMap is based on GeoNode and at the time of writ-

ing has been used by more than 20,000 registered users
and provides access to about 120,000 map layers and 5000
maps (collections of layers).
In a WorldMap map object, users can combine local

layers and remote layers (Fig. 1).
A local layer is a geospatial dataset managed by GeoNode:

the data is stored as a PostgreSQL/PostGIS table if the
layer is a vector dataset, or as a Geotiff file on disk if the
layer is a raster dataset. In both cases the layer is displayed
in the mapping client, which is based on the OpenLay-
ers JavaScript library, using the OGC WMS standard [9]
or the WMS-C specification, which are implemented by
the GeoNode rendering engine, GeoServer.Whenever the
client needs to access the coordinates of the feature’s
geometry, the OGC WFS 20 and the Web Feature Service
- Transaction (WFS-T) standards, in GeoServer, are used.
A remote layer is a layer published in an external web

map service. Most of the web map services are imple-
mented using OGCWeb Standards or specifications - like
WMS, WMS-C, Tile Map Service (TMS), Web Map Tile
Service (WMTS), WFS - or custom open protocols such
as the Esri ArcGIS REST MapServer and ImageServer.

Hypermap registry
In a WorldMap map object it is possible to combine local
GeoNode layers and remote layers from external web map
services. Because there is a very large number of local
and remote layers to search, a search platform is needed
to enable WorldMap users to discover the most appro-
priate and reliable dataset for their specific need. The
requirements of such a platform are:

• Enable creation and maintenance of a registry of web
map services, exposed as OGC standards and Esri
REST endpoints

• Make the collected geospatial information easily
discoverable

• Constantly monitor layers status in order to filter out
from users search layers which are not reliable: for
example, layers which are published in not constantly
up and running web map services

• Collect usage statistics to enable crowd curation of
local and remote layers

• Provide instant previews (thumbnails) of local and
remote layers

• Support visualization of geographic distribution of
results returned

• Support robust search by time as well as space

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 4 of 12

Fig. 1 Local and remote layers in WorldMap. Local layers are stored in GeoNode and loaded in the client using OGC standards implemented by
GeoServer. Remote layers are exposed by a number of web map services using OGC standards or open protocols

In 2015 CGA started the design and development of
Hypermap Registry (referred also as Hypermap), a reg-
istry platform to harvest and manage a large catalogue
of web map services. Hypermap is released under the
Massachusetts Institute of Technology (MIT) open source
license, and is hosted on GitHub21.
CGA runs a public instance of this platform, named

Harvard Hypermap (HHypermap)22, which is used by
WorldMap to enable the users to search and use layers in
their maps.
HHypermap implements a number of features in an

attempt to provide high quality and reliable results to
WorldMap users searching geospatial content published
in web map services.
CGA staff has harvested a large number of web map

services and layers using HHypermap. This information
is handled in a relational database, and more services
and layers can be added using the Hypermap user inter-
face by system administrators or external users who can
suggest map service endpoints. Hypermap is a web appli-
cation with a public user interface providing users with
access to the service information collected. Administra-
tors can manage the information, for example adding a
new map service to harvest or checking the health of
known services.

Implementation
Conceptual model
Hypermap conceptual model is composed of three main
entities: services, layers and checks (Fig. 2).

A service represents a remote map service, which
can be implemented using an OGC standard (currently
Hypermap supports WMS, WMTS, TMS) or an ArcGIS
REST protocol (currently REST MapServer and Image-
Server). OGC CSW, which provides a remote catalogue of
layers and datasets, can also be used.
Each service publishes a capability document which

exposes a number of layers. A layer is a geospatial dataset
accessible on the web. For each layer published in a given
service capabilities document, Hypermap harvests a layer
thumbnail, based on a GetMap (or similar) web service
request and information such as the name, the title, the

Fig. 2 Entity-relationship (ER) model of Hypermap. The main
Hypermap entities are services, layers and checks. There is a 1-n
cardinality between services and layers, service and checks and layers
and checks

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 5 of 12

abstract, the keywords, the available spatial reference sys-
tems and its bounding box (Fig. 3).
A reality of remote services is variable service qual-

ity (downtime, slow performance, etc.). A remote service
which is down for maintenance can be problematic for
real-time applications. An important feature of Hypermap
is the ability to periodically check the health of services
and their layers, to provide end users with the most reli-
able ones. A check on a service is performed by sending
an http request to the service capabilities document. If
the request returns an http status code equals to 200
then the service check is considered successful. A check
on a layer is performed by sending a GetMap (or sim-
ilar) request to the layer. If an image is returned, then
the check is considered successful, otherwise the check is
unsuccessful and the returned error message is stored in
the database.
For every check performed on a service or layer Hyper-

map collects high level metrics like request date/time,
response time and status (success, failure). This way it is
possible to generate a reliability index, which is the num-
ber of successful responses on the total number of http
requests (Fig. 4). This index can be used by the Hypermap
search engine to provide weighted results to the end users.
For each service and layer Hypermap stores temporal

information about the depict dates. This information,

when not provided by the layer’s metadata, is automati-
cally extracted by parsing textual metadata fields such as
the title and the abstract [12].
Hypermap provides a mechanism to periodically check

the services and the layers. The registry needs to be
updated frequently as new services and layers are pub-
lished and older services and layers become stale. A
system administrator is able to schedule the checking fre-
quency for any service or group of services, or even for
specific layers.

Architecture
Hypermap is a web application based on a relational
database which is composed of a number of differ-
ent components. The web application lets administrators
manage the collected web map services and their layers,
and their corresponding checks.
The system implements anOGCCSWendpoint, which

enables external systems to search the Hypermap cata-
logue metadata using the CSW standard to provide broad
interoperability to both mass market applications as well
as geospatial professionals or subject matter experts.
In order to provide an enhanced search experience

to end users and return results as fast as possible, a
search engine has also been added to the stack. Therefore
Hypermap needs to synchronize part of the information

Fig. 3 Service details page in Hypermap. The service details page shows the main information for a given service and its exposed layers

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 6 of 12

Fig. 4 Layer checks page in Hypermap. The layer checks page shows statistics about checks performed in the time for a given layer

stored in the relational database to the search engine
indexed content.
Hypermap provides a RESTful Application Program-

ming Interface (API) that can be used to query the
search engine which abstracts the search engine technol-
ogy being used (Solr or Elasticsearch).
Hypermap cannot process all of the user requests syn-

chronously because some require more time than is ideal
for the http request response cycle. A task queue is
needed to process asynchronously the tasks generated by
these requests. Typical tasks are the check of a service
or layer and the synchronization of the layer information
between the relational database and the search engine.

Hypermap also includes a map cache engine, which
caches and re-projects layers from the web map services
on the fly. Caching a given layer’s tile greatly accelerates
the response time for clients, assuming the tile had been
previously generated from the remote service - typically
by a previous request or with a layer pre-seed process.
Another benefit of using a map cache engine is to sup-
port a layer re-projection operation to a different spatial
reference system which is not supported by the original
remote service.
In the following sections we provide a description of

the implementation for each of the different components
of Hypermap: web application, relational database, search

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 7 of 12

engine, application API, map cache, OGC Catalogue, task
queue (Fig. 5).

Web application
Hypermap is a web application based on Django23, a
Python web framework well suited for handling informa-
tion structured in a relational database.
The application uses a number of external Python

libraries, most notably:

• OWSLib, which enables client programming with
OGCWeb Services (OWS) supported by Hypermap:
CSW, WMS, WMTS, TMS

• arcrest, which enables client programming with Esri
ArcGIS REST services

• psycopg2, a PostgreSQL adapter for Python
• Celery, which together with RabbitMQ, an open

source messaging broker, implements a distributed
task queue

• djmp, which enables the use of MapProxy within the
Django environment

• pysolr and elasticsearch, which enable client
programming with Solr and Elasticsearch

The application leverages design patterns for service
checking and metrics from GeoHealthCheck, a service
status and quality of service checker for OGC Web
Services24.

Relational database
Hypermap Relational Database Management System
(RDBMS) is based on PostgreSQL, an advanced open

source database. In Hypermap, all of the needed informa-
tion is managed using different relational tables. The main
tables contain the information related to the Hypermap
entities, the main ones being services, layers and checks.
Other tables are used by Django to store the metadata of
the web application, and others are used by the task queue
component to schedule tasks and their results.

Search engine
The approach of combining search engine with a tra-
ditional web portal in order to enhance the search
user experience can be extended to SDI and GeoCMS
[13]. The Hypermap search engine is based on Solr or
Elasticsearch. Both are based on the Apache Lucene text
search library. The search engine enriches the search user
experience by providing:

• Extremely fast and scalable search, thanks to the
indexed structure of the content

• Support for results faceting, providing search results
in categories based on indexed terms. For example
metadata results can be arranged by topic category,
keyword and region

• Spatial facets provide a spatial surface representing
the geographic distribution of layers

• Temporal facets can be used to arrange results by
temporal histogram

• Ability to handle the ambiguities of natural
languages, thanks to stopwords (words filtered out
during the processing of text), stemming (ability to
detect words derived from a common root),

Fig. 5 Architecture of Hypermap. Hypermap is composed of a web application and API, a relational database, a search engine, a map cache, an OGC
catalogue and a task queue. The mapping clients interact with the Hypermap components using standards over http requests

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 8 of 12

synonyms detection, and controlled vocabularies
such as thesauri and taxonomies

• Scored results, providing more relevant results at the
top

• Support for regular expressions, wild-card, and fuzzy
search capabilities

• Support for boolean queries
• Hit highlighting, which provides immediate search

term suggestions

Application API
The Hypermap application API provides a convenient
way to query the search engine content using REST. The
API implementation is based on Swagger25, which is a
framework of API developer tools for the OpenAPI Spec-
ification. Swagger provides a convenient way to clearly
render API definitions, in a way that is search engine
agnostic. This way it is possible to query the API in the
same manner whatever is the search engine technology
being used (Solr or Elasticsearch).
The Hypermap application API is used by the

WorldMap search interface, from where users are able to
search layers by keyword, source, layer type, bounding box
and temporal range.

Map cache
The Hypermap map cache component (Fig. 6) is based
onMapProxy26, an open source proxy for geospatial data
written in Python, which caches, accelerates (up to 100
times for someWMS) and re-projects layers from existing
map services. MapProxy is based on configuration files:
Hypermap generates a configuration for each layer which
can be used by external clients, likeWorldMap, to retrieve
maps using standards like WMS-C, TMS, WMTS.
The MapProxy configuration file and a demo of the

cached layer are accessible from the Hypermap layer
details page.

Fig. 6 Architecture of Hypermap map cache component. The map
cache component, MapProxy, acts as a proxy to the external map
services and provides a quick access tiles cache with support to the
spatial reference systems used in the WorldMap client

OGC catalogue
Hypermap OGC Catalogue component is based on
pycsw27, which is an OGC CSW server implementation
written in Python. Because of the pycsw entry point,
users are able to query Hypermap metadata using the
CSW standard, allowing for broad interoperability across
multiple platforms and decision support systems.
For example it is possible to use the MetaSearch plugin

in the popular QGIS desktop GIS software or the CSW
Client in Esri ArcGIS products to search Hypermap and
add remote map layers discovered to the map canvas.
pycsw uses the Hypermap RDBMS directly as its meta-

data repository. This is made possible by a custom pycsw
plugin for Hypermap developed for this purpose.

Task queue
The task queue component is based on Celery/
RabbitMQ28. Hypermap requires a task queue to process
large number of asynchronous tasks such as:

• Layer check task: a layer check is performed with a
GetMap (or equivalent) request to a WMS (or
equivalent) service type. This kind of requests can
take up to some seconds to be processed, so it is
always better to process them asynchronously from
the regular http request/response cycle

• Service check task: a service check is performed with
a GetCapabilities (or equivalent) request to WMS (or
equivalent) service type. There are cases with very
large (or slow, or both) GetCapabilities documents,
which are therefore time consuming and need to be
processed asynchronously. A service check typically
generates a child layer check task for each one of the
service layers

• Layer synchronization task: every time a layer is
checked, the layer information is updated by
Hypermap in the relational database. But part of this
information must be synced to the search engine with
an http request, which is better processed
asynchronously in the task queue

In Hypermap there can be thousands of tasks which
need to be run in the queue daily. The task queue imple-
mentation provides a convenient way to scale when task
numbers increase, by adding more parallel workers to the
execution stack. The task queue also provides a handy way
to run periodic tasks, for example services which need to
be checked regularly, and the ability to inspect the status
of processed tasks.

Results and discussion
The CGA developed Hypermap and maintains its HHy-
permap instance with one aim being to provide to
WorldMap users an enhanced search experience with
quality and reliable results. The broader aim is to start

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 9 of 12

to address the general problem of search for map service
layers outside of WorldMap by creating an open source
platform for building and maintaining large registries
which can be used by a variety of clients. We consider the
WorldMap search client to be a prototype for the devel-
opment of others which run in other systems and provide
their users with powerful geo-search capabilities.
When creating a map, the WorldMap user can upload

new layers and combine them with the thousands of local
and remote layers indexed inHHypermap. The user is able
to search the layers by keyword, source, layer type, map
extent, and date range (Fig. 7).
The WorldMap search interface queries the HHyper-

map search engine via the application API, returning
the most relevant results in a tabular view as well as a
spatial view.
The tabular view is built based on the JavaScript Object

Notation (JSON) results returned by a query to the search
engine. The query includes all of the parameters which the
user set in the WorldMap search interface.
The spatial view displays a heat map around the number

of layers found on each cell of a spatial regular grid, which
is generated from the results returned by the spatial facets
feature of the search engine.

A number of advantages for searching content have
been introduced in WorldMap by the use of the Hyper-
map API. Queries to the search engine are extremely fast
as the metadata content has been pre-indexed during the
tasks which synchronize the content between the rela-
tional database and the search engine itself. Results from a
search engine are returned to the client much faster than
from a CSW catalogue implementation based on a rela-
tional database. Thanks to a distributed architecture, the
search engine is also extremely scalable.
Furthermore, when compared to a CSW catalogue,

which searches metadata using a full text approach, the
search engine is able to detect a larger number of match-
ingmetadata documents, as it is able to use thesaurus, text
stemming and synonyms detection to recognize common
variations of a given keyword or sentence.
Table 1 presents the evidence that a search engine out-

puts more results and faster than a CSW catalogue backed
by a RDBMS.We selected a number of very common key-
words appearing in the HHypermap layers metadata (a
total number of about 120,000 documents, one for each
layer): for each of them we calculated how many match-
ing metadata documents are returned respectively from
the WorldMap search engine, based on Solr, and from

Fig. 7WorldMap search user interface. TheWorldMap search user interface let the user to query the Hypermap search engine using the Hypermap API

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 10 of 12

Table 1 The search engine outputs a larger number of matches and with a faster response time when compared it to a CSW
catalogue based on a relational database

Search engine CSW catalogue

Keyword Number of results Average response time (ms) Number of results Average response time (ms)

Agriculture 879 0.015 444 1.297

Climate 1289 0.017 783 1.317

Farming 522 0.016 50 1.327

Health 1338 0.016 779 1.335

Ocean 767 0.016 476 1.344

Planning 2080 0.015 760 1.297

Population 1471 0.018 1302 1.317

Society 3162 0.016 157 1.328

Transportation 2197 0.017 1091 1.362

Utilities 1082 0.016 350 1.308

the WorldMap CSW catalogue, based on the PostgreSQL
RDBMS. The average response times (in ms), calculated
on 100 different queries, are also provided. Both Solr and
PostgreSQL are using a default installation and configura-
tion in a Linux Ubuntu environment. To generate the table
we developed a Python script with the owslib and pysolr
libraries to interact with pycsw and Solr29.
As it can be noticed, returned results from the search

engine can be up to 20 times the number of results
returned from the CSW catalogue based on a rela-
tional database, as in the case of the keyword "society".
This is because the catalogue uses the full text fea-
ture of the relational database, while the search engine,
with its powerful feature set, returns metadata contain-
ing all of the common variations and synonyms for a
given keyword.
At the time of writing, in theHHypermap database CGA

administrators have harvested about 15,000 services for a
total of about 120,000 layers. The services and layers are
regularly checked and re-indexed in the search engine as
needed. This is possible by creating periodic operations
from the Hypermap administrative interface to perform
service and layer checks and for service and layer syn-
chronizations between the RDBMS and the search engine.
These periodic operations are scheduled and executed in
the task queue.

HHypermap provides a reliability index for each layer
and service, which is computed as the number of success-
ful checks on the total number of checks. It is interesting
to note that there are a number of services and layers
which have a low reliability index. It is possible to dis-
able these services or layers to prevent them from being
returned or to weight them such that they disappear from
search results.
Table 2 presents the first five layer metadata documents

returned by Hypermap search engine for the search term
“agriculture”. For each document in the table there is a
row which displays the ID of the service to which the
layer belongs to, the layer title, the number of checks
performed on the layer, the last check date, the reliabil-
ity of the layer and the search engine score. The search
engine score is based on the Lucene scoring model, which
involves a number of scoring factors, most notably the
term frequency and the proportion between the search
term and the total length of the searched fields [5].
As it can be deducted from the table, a layer with a high

search engine score can have a low reliability, which is
not desirable for end users. In the same way, it is possible
to have very reliable layers but with a low search engine
score. While at the time of writing Hypermap uses only
search engine score to order results, in future versions it
will combine reliability with the search engine score to

Table 2 Results from Hypermap API for a keyword search with the term “agriculture”

Service ID Layer title Total checks Last check date Reliability (%) Search score

23 Makkah 1947 Agriculture 13 02/02/2018 92.308 9.139

12006 Gross Value Add (2008) 5 02/19/2018 80.000 8.950

4663 Agriculture Regions 5 02/19/2018 100.000 8.855

1028 Agriculture Census 4 02/19/2018 100.000 8.855

23 Urban Agriculture 13 02/02/2018 84.615 8.855

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 11 of 12

return to the users the most appropriate layers. Another
criteriumwhich we are considering to better define results
is to use layer usage statistics: Hypermap layers which are
used in a large number of WorldMap maps will have a
higher score.
An additional feature provided by Hypermap is that lay-

ers are cached by the Hypermap map cache, based on
MapProxy, making remote map layer display fast and reli-
able. Significantly, this enables instant previews of any
given layer during the search process. Even if a map layer
tile is not available at the time it is requested, Hypermap
can still return the cached tile from MapProxy, provided
it has been already generated from a previous request
or in case the layer has been pre-seeded when it was
accessible.

Conclusions
Hypermap is an open source software platform which
enable organizations to create large catalogues of reliable
and discoverable map layers.
While the main aim of HHypermap is to provide fast

and reliable search results to WorldMap users, Hyper-
map can be used by organizations in a variety of
scenarios including:

• To monitor and health check the layers of a given SDI
• As a CSW catalogue of the SDI itself providing both

registry and catalog functionality that includes
service monitoring

• To enhance the catalogue of an SDI with the speed
and features of a search engine

• To implement in a geoportal a search experience
based on keywords, as well as temporal and spatial
faceting

• As a user interface to MapProxy, to proxy local and
remote layers to make them fast, more reliable and to
reproject them as needed

• As a complement to a running GeoNode instance in
order to provide support for remote services and
layers

The authors hope to eventually develop additional
features:

• A search engine backend for pycsw to improve the
speed and quality of results returned from catalogues

• Support for the WFS standard and Esri Feature
Service protocol to enable user search at the feature
level in addition to the layer level

• Include more web service types in the supported
service type list

The authors also plan to implement Hypermap Registry
as a native application for GeoNode, for the manage-
ment of remote services. Currently the GeoNode remote

services application is limited, as it doesn’t provide the
search engine integration and the monitoring tools which
are available in Hypermap.

Availability and requirements
• Project name: Hypermap Registry
• Project home page: https://github.com/cga-harvard/

Hypermap-Registry
• Archived version: https://doi.org/10.5281/zenodo.

1044763
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: nginx or httpd, uwsgi,

PostgreSQL, Solr/Elasticsearch, RabbitMQ
• License: MIT

Endnotes
1PostgreSQL. https://www.postgresql.org/. Accessed 14

April 2018
2 PostGIS. http://postgis.net/. Accessed 14 April 2018
3GeoServer. http://geoserver.org/. Accessed 14 April

2018
4MapServer. http://mapserver.org/. Accessed 14 April

2018
5OpenLayers. https://openlayers.org/. Accessed 14 April

2018
6 Leaflet. http://leafletjs.com/. Accessed 14 April 2018
7OGC CSW. http://www.opengeospatial.org/standards/

cat. Accessed 14 April 2018
8GeoNode. http://geonode.org/. Accessed 14 April 2018
9Mapbender. https://mapbender.org/. Accessed 14 April

2018
10Cartaro. http://cartaro.org/. Accessed 14 April 2018
11GeoNetwork. https://geonetwork-opensource.org/.

Accessed 14 April 2018
12Carto. https://carto.com/. Accessed 14 April 2018
13Apache Solr. http://lucene.apache.org/solr/. Accessed

14 April 2018
14 Elasticsearch. https://www.elastic.co/. Accessed 14

April 2018
15Apache Lucene. https://lucene.apache.org/. Accessed

14 April 2018
16WMS-C. https://wiki.osgeo.org/wiki/WMS_Tile_Caching.

Accessed 14 April 2018
17OGC WFS. http://www.opengeospatial.org/standards

/wfs. Accessed 14 April 2018
18 Esri ArcGIS REST API. https://developers.arcgis.

com/rest/. Accessed 14 April 2018

https://github.com/cga-harvard/Hypermap-Registry
https://github.com/cga-harvard/Hypermap-Registry
https://doi.org/10.5281/zenodo.1044763
https://doi.org/10.5281/zenodo.1044763
https://www.postgresql.org/
http://postgis.net/
http://geoserver.org/
http://mapserver.org/
https://openlayers.org/
http://leafletjs.com/
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat
http://geonode.org/
https://mapbender.org/
http://cartaro.org/
https://geonetwork-opensource.org/
https://carto.com/
http://lucene.apache.org/solr/
https://www.elastic.co/
https://lucene.apache.org/
https://wiki.osgeo.org/wiki/WMS_Tile_Caching
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
https://developers.arcgis.com/rest/
https://developers.arcgis.com/rest/

Corti et al. Open Geospatial Data, Software and Standards (2018) 3:8 Page 12 of 12

19WorldMap web site. http://worldmap.harvard.edu/.
Accessed 14 April 2018

20OGCWFS. http://www.opengeospatial.org/standards
/wfs . Accessed 14 April 2018

21Hypermap. https://github.com/cga-harvard/Hypermap
-Registry. Accessed 14 April 2018

22Harvard Hypermap. http://hh.worldmap.harvard.edu/.
Accessed 14 April 2018

23Django. https://www.djangoproject.com/. Accessed
14 April 2018

24GeoHealthCheck.http://geohealthcheck.org/. Accessed
14 April 2018

25 Swagger. https://swagger.io/. Accessed 14 April 2018
26MapProxy. https://mapproxy.org/. Accessed 14 April

2018
27 pycsw. http://pycsw.org/. Accessed 14 April 2018
28Celery. http://www.celeryproject.org/. Accessed 14

April 2018
29Solr vs RDBMS script. https://goo.gl/ZqHxog. Accessed

14 April 2018

Abbreviations
API: Application programming interface; CGA: Center for geographic analysis;
CMS: Content management system; CSW: Catalogue service for the web;
DCMS: Data content management system; GeoCMS: Geospatial content
management system; HHypermap: Harvard hypermap; IQSS: Institute for
quantitative social science; JSON: JavaScript object notation; MIT:
Massachusetts institute of technology; OGC: Open geospatial consortium;
RDBMS: Relational database management system; REST: Representational
state transfer; SDI: Spatial data infrastructure; TMS: Tile map service; WCS: Web
coverage service; WFS: Web feature service; WFS-T: Web feature service -
transaction; WMS: Web map service; WMS-C: Web map service tile caching;
WMTS: Web map tile service

Acknowledgements
The authors thank all the contributors to the Hypermap, WorldMap and
GeoNode platform source code, particularly: Matt Bertrand, Simone Dalmasso,
Alessio Fabiani, Jorge Martínez Gómez, Wendy Guan, Jeffrey Johnson, Devika
Kakkar, Jude Mwenda, Ariel Núñez, Luis Pallares, David Smiley, Charles Thao,
Mingda Zhang

Funding
This work is partially funded by the U.S. National Endowment for the Humanities,
Digital Humanities Implementation Grant #HK5009113 and the U.S. National
Science Foundation’s Industry-University Cooperative Research Centers
Program (IUCRC) grant for the Spatiotemporal Thinking, Computing, and
Applications Center (STC) #1338914. Grant administration supported by the
Institute for Quantitative Social Science, Harvard University.

Authors’ contributions
PC wrote the manuscript. ATK and BL reviewed the manuscript. PC and ATK
are members of the Hypermap, GeoNode and pycsw development team. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Center for Geographic Analysis, Harvard University, 1737 Cambridge Street,
K350, 02138 Cambridge, MA, USA . 2Open Source Geospatial Foundation,
14525 Sw Millikan Way, 24105 Beaverton, OR, USA .

Received: 20 December 2017 Accepted: 1 May 2018

References
1. Li W, Yang C, Yang C. An active crawler for discovering geospatial web

services and their distribution pattern–a case study of ogc web map
service. Int J Geographical Inf Sci. 2010;24(8):1127–47.

2. Xiujun M, Gang L, Kunqing X, Meng S. A peer-to-peer approach to
geospatial web services discovery. In: Proceedings of the 1st international
conference on Scalable information systems. New York: ACM; 2006. p. 53.

3. Sample JT, Ladner R, Shulman L, Ioup E, Petry F, Warner E, Shaw K,
McCreedy FP. Enhancing the us navy’s gidb portal with web services. IEEE
Internet Comput. 2006;10(5):53–60.

4. Schutzberg A. Skylab mobilesystems crawls the web for web map
services. OGC user. 2006;8:1–3.

5. McCandless M, Hatcher E, Gospodnetic O. Lucene in action: covers
Apache Lucene 3.0. Birmingham: Manning Publications Co.; 2010.

6. Wu S, Zhang M, Huang Q, Wan C, Cao J, Gui Z, Qin K, et al. Design a
web portal for visualizing and exploring service quality of global ogc web
map services. In: Geoinformatics, 23rd International Conference on.
Wuhan: IEEE; 2015. p. 1–5.

7. Shadbolt N, O’Hara K, Berners-Lee T, Gibbins N, Glaser H, Hall W, et al.
Linked open government data: Lessons from data. gov. uk. IEEE Intell Syst.
2012;27(3):16–24.

8. King G. An introduction to the dataverse network as an infrastructure for
data sharing. Sociol Methods Res. 2007;36(2):173–99.

9. de La Beaujardiere J. Opengis® web map server implementation
specification: Open Geospatial Consortium Inc, OGC; 2006, pp. 06–042.
http://portal.opengeospatial.org/files/?artifact_id=14416.

10. Baumann P. Ogc wcs 2.0 interface standard—core. Wayland: Open
Geospatial Consortium; 2010.

11. Guan WW, Bol PK, Lewis BG, Bertrand M, Berman ML, Blossom JC.
Worldmap–a geospatial framework for collaborative research. Ann IS.
2012;18(2):121–34.

12. Corti P, Lewis B. Making temporal search more central in spatial data
infrastructures. In: ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences 4. Gottingen: Copernicus GmbH; 2017.

13. Corti P, Lewis BG, Kralidis T, Mwenda J. Implementing an open source
spatio-temporal search platform for spatial data infrastructures. Tech. rep.,
PeerJ Preprints. 2016.

http://worldmap.harvard.edu/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
https://github.com/cga-harvard/Hypermap-Registry
https://github.com/cga-harvard/Hypermap-Registry
http://hh.worldmap.harvard.edu/
https://www.djangoproject.com/
http://geohealthcheck.org/
https://swagger.io/
https://mapproxy.org/
http://pycsw.org/
http://www.celeryproject.org/
https://goo.gl/ZqHxog
http://portal.opengeospatial.org/files/?artifact_id=14416

	Abstract
	Keywords

	Introduction
	Background
	Geospatial content management systems
	Search engines
	Web map services
	Harvard WorldMap
	Hypermap registry

	Implementation
	Conceptual model
	Architecture
	Web application
	Relational database
	Search engine
	Application API
	Map cache
	OGC catalogue
	Task queue

	Results and discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

