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Abstract

Route prediction play a vital role in many important location-based applications like resource prediction in grid
computing, traffic congestion estimation, vehicular ad-hoc networks, travel recommendation etc. The goal of this
work is to design scalable route prediction application based on Context Tree Weighting (CTW) modeling of user
travel data. CTW is one of the widely used technique for text compression as well string sequence indexing and for
prediction. CTW tree construction from the huge volume of data by sequential processing is time-consuming in
practical implementation. Existing techniques are designed for single machine and their implementation on the
distributed environment is still a challenge. This work focuses on achieving horizontal scalability of CTW and
addresses various challenges in distributed construction like reducing I/O, parallel computation of sequences and
coming up with final CTW tree in a distributed environment efficiently. Map Reduce framework running over
Hadoop file system is used for processing in distributed mode. Large GPS data set is map-matched to digitized
road network obtained from Open Street Map and CTW model is built. A two-step construction of CTW tree is
proposed which is implemented in the map-reduce framework. Horizontally scalable CTW model is built and
evaluated for route prediction from a huge corpus of historical GPS traces.
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Introduction
Route prediction is a key requirement in many
location-based important applications like vehicular
ad-hoc networks, traffic congestion estimation, resource
prediction in grid computing, vehicular turn prediction,
travel pattern similarity, pattern mining etc. Route pre-
diction is a problem which deals with, given a sequence
of road network graph edges already traveled by the user,
predict the most probable edge of the network to be
traveled. Our approach is to build a CTW model from a
huge corpus of sequential trajectories traveled by the
user in past. CTW model built is probabilistic in nature.
Context tree weighting (CTW) is widely used in various
applications in the area of data compression and
machine learning [1]. Time-stamped GPS traces are col-
lected over a long period of time. The chronological
huge sequence of GPS traces is broken down into a
smaller unit called trip [2, 3]. Trips are mapped to road
network graph using map matching process which

identifies the object’s location on road network graph
[4–6]. CTW tree based model is constructed from trips
composed of an ordered sequence of road network
edges. Given a trajectory traveled by the user a lookup is
done in the CTW tree based model and the most likely
edge is found.
Willems et al. [7] presented CTW algorithm which is

a strong lossless compression algorithm. Followed by
this, many research work were carried out on CTW
which were focused on achieving accuracy and reducing
time complexity [8]. CTW models use a set of historical
occurrences of sequences to predict the probability of
which a specific symbol would appear at a given position
in an input stream. CTW is a combination of many
lower order Markov models. Real applications using
CTW deals with processing of huge data sets in a
sequential manner is time-consuming and is a hurdle
in practical implementation. Existing techniques are
designed for single machine and scalability is achieved
by increasing system resources like processors, mem-
ory etc. on the single system [7, 9]. An alternative ap-
proach to achieve scalability is to make processes run
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over a distributed cluster of independent systems.
Construction of CTW in distributed mode still exists
as a challenge. This work addressed this challenge by
processing trips in parallel on distributed nodes and
finally consolidating them to form CTW model. This
is achieved in a two-step process. Set of user trips is
decomposed into smaller sets and ported to compute
module known as mappers. Mappers compute the
variable order contexts as key-value pairs. In each
case, the key is the context and value is the occur-
rence frequency in the training set. Key value pairs
from various mappers are emitted to reducer node.
Reducer consolidates the occurrences of various con-
texts and inserts in CTW tree. The final tree pro-
duced by reducer is CTW model and is used for
route prediction. The major contribution of this work
is a technique of distributed computation of CTW
and its application in route prediction. All experi-
ments and implementation are done on real datasets
available openly in public domain.

Background
Context Tree Weighting (CTW) is a context modeling
based adaptive statistical data compression technique. It
has evolved as a better alternative for solving many
problems in the field of biomedical engineering, natural
language processing and artificial intelligence. CTW
models use a set of historical occurrences of sequences
to predict the probability of which a specific symbol
would appear at a given position in an input stream.
Arithmetic encoding was proposed in 1976 after which
lots of statistical methods were proposed like PPM, PST
etc. A strong technique known as Context Tree Weight-
ing (CTW) was proposed after two decades by Willems
et al. [7] which is a combination of many bounded
length Markov models. Tjalkens et al. [10] proposed an
encoding for CTW-method which was binary. It pro-
posed to store the probabilities in the node of the CTW
tree and lead to a reduction in storage space require-
ment. Sadakane et al. [11] presented a variant of CTW
which established theoretical and experimental applica-
tions of CTW. Begleiter et al. [8] came up with a CTW
implementation for supporting multi-alphabet scenario
with a parameter to optimize CTW on binary alphabets.
It was reported to achieve a compression rate of
2.27 bps on Calgary Corpus. Tjalkens et al. [12] extended
CTW method for compressing ASCII and Byte files
using binary decomposition and zero redundancy esti-
mator. Volf [13] presented a variant of CTW which used
a hierarchical tree based decomposition and applied for
prediction over binary symbols. Each binary problem
was solved by a slightly different variant of CTW.
Begleiter et al. [1] further explored CTW and success-
fully applied in Artificial Intelligence (AI) applications

including text prediction and music recognition and it
worked well. Objectives of almost researchers on CTW
were either improving its accuracy and execution on a
single machine or its application in different fields of
study. Comparison of major work in this area is summa-
rized in Table 1. In spite of huge applicability, parallel
execution of CTW model building is hardly explored.
The idea of this work is to come up with a technique for
distributed computation of CTW and its application in
route prediction.

Methodology
CTW tree from user location traces
Time-stamped GPS traces are collected over a long
period of time. GPS traces are in the form ðxt0 ; yt0; t0Þ;
ðxt1 ; yt1; t1Þ…ðxtn ; ytn; tnÞ which represents object’s location
ðxtk ; xtk Þ at time tk. Chronological huge sequences of GPS
traces are broken down in smaller units called trips [2, 3].
A user trip T = (ps, ts, pe, te) is an ordered sequence of GPS
location data points (pi, ti) ∀ 1 ≤ i ≤ n where ps, pe are start
and end positions and ts, te are start and end time of trips
respectively.

T ¼ xt0 ; yt0; t
0

� �
; xt1 ; yt1; t

1
� �

… xtm ; ytm; tm
� �

ps ¼ xt0 ; yt0;
� �

; ts ¼ t0; pe ¼ xtm ; ytm;

� �
; ts ¼ tm

Two trips T1 and T2 are said to be consecutive if the
end of the first trip is the same position as the end of
the second trip and there is a time gap between two. A
user trip plotted on Open street map (OSM) base image
is as shown in Fig. 1.
Trips are mapped to road network graph using map

matching process which identifies the object’s location
on road network graph [14, 15]. Map matching is func-
tion f which for which input is GPS location and road

Table 1 Comparison of the most important algorithms for CTW
construction

Complexity Parallel Probabilistic

Begleiter et al. (2004) [1] O(n2) No yes

Willems et al. (1997) [7] O(n2) No yes

Tjalkens et al. (1997) [10] O(n2) No yes

Begleiter et al. (2006) [8] O(n2) No yes

Sadakane et al. (2000) [11] O(n2) No yes

Tjalkens et al. (1997) [12] O(n2) No yes

Volf, P. (2002) [13] O(n2) No yes

Aberg et al. (1997) [33] O(n2) No yes

Willems, F. (1998) [34] O(n2) No yes

Willems et al. (1996) [35] O(n2) No yes

Willems, F. (1996) [36] O(n2) No yes

Proposed CTW O(n2) yes yes
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network graph and output is the edge of the road
network.

f xt0 ; yt0; t
0

� �
; xt1 ; yt1; t

1
� �

… xtn ; ytn; t
nð Þ� �

→S

Where sequence S is ordered sequence of road net-
work edges. Let set ∑ = {e1, e2, e3, e4, e5} be a finite set of
all the edges of the digitized road network and ∑∗ repre-
sents all finite length trips possible. Any trip user makes
is essentially belongs to ∑∗. Let X = e0, e1, …. , en − 1 with
xi ∈ ∑ & X ∈ ∑∗ be a trip then the length of the trip is
given by |X| = |e0, e1, …. , en − 1|.
For trip X = e1, e2, e3, e4, e5 context for e2 is e1, for

e3 context is e1, e2 and context for e4 is e1, e2, e3, e4
and so on. The ordered arrangement of all contexts
sσ,where σ is symbol and s is context the of σ, is
compact TRIE is known as the CTW tree [11]. For
demonstration purpose let us assume road network
edges set ∑ = {e1, e2, e3, e4, e5} and a trip X = e1, e2, e5,
e1, e3, e1, e4, e1, e2, e5, e1. All the contexts with length
d = 2 are as shown in Table 2 and resulting CTW tree
is as shown in Fig. 2.

Two phase CTW tree construction
Proposed technique of CTW construction is a two-step
process. The first phase is used to compute all contexts
of length ≤ d where d denotes the length of trip (number
of edges in the trip). All the contexts sσ is generated for
each symbol σ and are put into a map which stores se-
quence as key and frequency as value. Second phase,

consolidates the occurrences of various contexts and in-
serts in a context tree. Final tree produced by reducer is
CTW model. Both steps are discussed below. In next
section, two phase implementation is extended to exe-
cute over map reduce framework.
Processing is as summarized in Algorithm I below.

Following sequence is used for demonstration X = e1, e2,
e5, e1, e3, e1, e4, e1, e2, e5, e1. All context s of length d ≤ 2

Fig. 1 User trip mapped to road network

Table 2 All contexts of length (D) ≤ 2 for e1, e2, e5, e1, e3, e1, e4,
e1, e2, e5, e1
S.No. D Context(s) Symbol(σ) sσ

1 1 e1 e2 e1, e2

2 1 e2 e5 e2, e5

3 1 e5 e1 e5, e1

4 1 e1 e3 e1, e3

5 1 e3 e1 e3, e1

6 1 e1 e4 e1, e4

7 1 e4 e1 e4, e1

8 2 e1, e2 e5 e1, e2, e5

9 2 e2, e5 e1 e2, e5, e1

10 2 e5, e1 e3 e5, e1, e3

11 2 e1, e3 e1 e1, e3, e1

12 2 e3, e1 e4 e3, e1, e4

13 2 e1, e4 e1 e1, e4, e1

14 2 e4, e1 e2 e4, e1, e2
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alongwith target symbol σ denoted by sσ computed by
Algorithm I is as shown in Table 3.

Length of string X is denoted by n. All contexts of
length d in X can be calculated in linear time Θ(n2) by
scanning X from left to right by maintaing a window of
size d. Window is advaced by one unit on scanning one
symbol. Maximum number of context strings each of
length ≤d that can appear in map is Θ(n2) where d≪ n.
This can happen only if contexts does not overlap other-
wise in practice number of contexts≤Θ(n).
The second phase starts with a tree from scratch and

keeps on inserting context sequences sσ obtained as input
from the first step. For a new context which is not seen
earlier, a completely new branch is created. Otherwise, a

path in the tree is found which is matching/overlapping
with current context then for all the nodes in an overlap-
ping path is increased by the frequency of occurring and
for remaining nodes are inserted starting the end of the
overlapping path. All contexts computed by Algorithm II
is as shown in Table 3.

The height of the tree is h =Θ(d + 1) ≅Θ(d) is linear of
the length of context. All branches are of equal length
and length of each branch is necessarily Θ(d). As estab-
lished earlier, Maximum number of context strings each
of length d that can appear in the map is Θ(n − d) ≅Θ(n)
when d≪ n. As soon as d approaches n then the total
number of context string aproacches O(1). In practice,
d≪ n means d is way less than n and nearly constant
O(1) so we assume a maximum number of context
string Θ(n) without loss of generality. Iteratively each
string sσ of length |sσ| = d which is formed by string
concatenation of context s and target symbol σ, is
inserted into CTW tree (starting with the empty tree).
Thoretically, cost of each insertion is O(d). Number of
such insertions is Θ(n) leads to total cost of O(nd) ≅
O(n2). In actual practice, it is very likely that pattern re-
peats and contexts are same. In such a scenario, a num-
ber of total context strings n(sσ)≪Θ(n) and cost of
construction of CTW tree on a single machine from the
output of Algorithm I is ≪Θ(nd). But as stated, d is way
less than n and is approximately a constant and hence
complexity of algorithm approaches Θ(n). Combining
running time of both phases is Θ(2n) =Θ(n).

Distributed construction of CTW tree
In order to achieve distributed construction of CTW
tree-based model, two-step process described in the earl-
ier section is extended to execute over Hadoop cluster

Fig. 2 CTW tree construction

Table 3 All contexts of length (d) ≤ 2 for e1, e2, e5, e1, e3, e1, e4,
e1, e2, e5, e1 with frequency

S.No. Sσ Frequency(f)

1 e1, e2 2

2 e2, e5 2

3 e5, e1 2

4 e1, e3 1

5 e3, e1 1

6 e1, e4 1

7 e4, e1 1

8 e1, e2, e5 2

9 e2, e5, e1 2

10 e5, e1, e3 1

11 e1, e3, e1 1

12 e3, e1, e4 1

13 e1, e4, e1 1

14 e4, e1, e2 1
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leveraging the map-reduce computation framework.
The first phase is executed by mapper module. Map
matches GPS traces and decomposed in smaller units
called trips are portioned into chunks of a set of trips
and to mapper module. All the contexts sσ is generated
by mapper for each symbol σ in the trip and are put
into a map which stores sequence as key and frequency
as value. Implementation of mapper for computation
of contexts under map reduce model is described in
Algorithm III.
To demonstrate the distributed construction of CTW

tree we take a string below. This will be used as running
example throughout for further discussion.

e1; e2; e5; e1; e3; e1; e4; e1; e2; e5; e1; e3; e1; e4; e1; e2; e5; e1; e3; e1

For sake of simplicity and demonstrate the concept in-
put string is split into two chunks. For each of the split,
a mapper is instantiated.

split S1 ¼ e1; e2; e5; e1; e3; e1; e4; e1; e2; e5; e1
processed by mapper m1

split S2 ¼ e5; e1; e3; e1; e4; e1; e2; e5; e1; e3; e1
processed by mapper m2

Split S1 has span (1 to 11) and split S2 has span (10 to
20). Output of both mappers m1and m2 are summarized
in Tables 4 and 5 respectively. In this example, context
sσ serves as key and frequency (f ) as value.

The output of mapper modules as a set of key-value
pairs where the key is context and value as the frequency
is emitted as input to the reducer. Reducer is the com-
mon point where intermediate key-value pairs computed
by each mapper is emitted. Even before sending the out-
put to the reducer, the framework does a consolidation
by adding the frequencies for each context as key. For
example if from one mapper value received is <e1, e2 |
4 > and < e1, e2 | 10 > then after merge the final entry be-
comes <e1, e2 | 14>. Each key-value pair is unique is en-
sured during this step. If multiple entries exist for the
same key then consolidation is done before sending it to
reducer [16, 17]. If data does not fit into memory then it
is periodically written to disk [18]. The result of consoli-
dation is shown in Table 6. Final CTW tree construction
is taken care by reducer function. Reducer starts with a
tree from scratch and keeps on inserting context se-
quences iteratively. For a new context which is not seen
earlier, a completely new branch is created. Otherwise, a
path in the tree is found which is matching/overlapping
with current context then for all the nodes in an over-
lapping path is increased by the frequency of occurring
and for remaining nodes are inserted starting the end of
the overlapping path. Implementation of the reducer is
as described in Algorithm IV and output of reducer is in
Table 7. CTW tree thus constructed is shown in Fig. 2.

Table 4 All contexts of length (d) ≤ 2 for e1, e2, e5, e1, e3, e1, e4,
e1, e2, e5, e1 with frequency computed by m1

S.No. sσ Frequency(f)

1 e1, e2 2

2 e2, e5 2

3 e5, e1 2

4 e1, e3 1

5 e3, e1 1

6 e1, e4 1

7 e4, e1 1

8 e1, e2, e5 2

9 e2, e5, e1 2

10 e5, e1, e3 1

11 e1, e3, e1 1

12 e3, e1, e4 1

13 e1, e4, e1 1

14 e4, e1, e2 1

Table 5 All contexts of length (d) ≤ 2 for e5, e1, e3, e1, e4, e1, e2,
e5, e1, e3, e1 with frequency computed by m2

S.No. sσ Frequency(f)

1 e5, e1 2

2 e1, e3 2

3 e3, e1 2

4 e1, e4 1

5 e4, e1 1

6 e1, e2 1

7 e2, e5 1

8 e5, e1, e3 2

9 e1, e3, e1 2

10 e3, e1, e4 1

11 e1, e4, e1 1

12 e4, e1, e2 1

13 e1, e2, e5 1

14 e2, e5, e1 1
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Route prediction using CTW
The objective is to predict the next edge σ E on the
road network given the user traveled trajectory S ¼ ðxt0 ;

yt0; t
0Þ; ðxt1 ; yt1; t1Þ…ðxtn ; ytn; tnÞ based on information

learnt from historical user travel data. In order to predict
next edge σ, S is map matched to digitized road network
using map matching process f as described in earlier
sections.

f xt0 ; yt0; t
0

� �
; xt1 ; yt1; t

1
� �

… xtn ; ytn; t
nð Þ→eieiþ1…eiþn

Trajectory S is converted the form of an ordered se-
quence of road network edges, can be considered as a
Markov chain where the highest possibility occurrence
among all other possibilities has.

p σð jeieiþ1…eiþnÞ
p is the conditional probability of occurrence of σ given

the event eiei + 1…ei + nhas already occurred. CTW tree
constructed has information learnt from historical travel
data of the user. Since CTW is an unbounded Markov
model, the corresponding tree may be balanced and each
path from root may be of different length. This makes
CTW a variable order Markov model. In the worst case
one have to traverse the longest branch of the CTW tree.
If the length of the longest branch of tree is k then the
complexity of prediction using CTW tree is O(k). Prob-
abilities of occurrence of each node starting with root
node is as shown in Fig. 2. Route prediction function de-
noted by a function Route_Predict can be represented as:

Route Predict eieiþ1…eiþnð Þ→σ

Below cases demonstrates prediction Route_Predict
function over CTW model constructed by Algorithm IV.

Case I
This is the case when the user is at root node which sig-
nifies user has not started travel. We represent user tra-
jectory S = ε. From CTW trie, it can be seen that various
possibilities for traversals are {e1, e2, e3, e4, e5}. Probabil-
ities for each case is as follows:

p e1j εð Þ ¼ 16
38

¼ 0:42; p e2j εð Þ ¼ 6
38

¼ 0:15; p e3j εð Þ
¼ 5

38
¼ 0:13; p e4j εð Þ ¼ 4

38
¼ 0:10; p e5j εð Þ

¼ 7
38

¼ 0:18

Hence Route_Predict(ε)→ e1.

Case II
Another case we explore is when edge e2 is traversed so
far S = . e2. Length of input trajectory is 1 unit only and
consists of single edge. Candidate edge after e2 is already
traversed is only one and is e5. In this case probability of
occurrence of e5 after e2 as context is p(e5| e2) = 1.
Hence Route_Predict(e2)→ e5.

Table 6 Result of merging of intermediate key/value pairs by
Map-Reduce framework

S.No. Key(k) Frequencies <K,<value_list>>

1 e1, e2 2, 1 < e1, e2, < 2, 1 > >

2 e2, e5 2, 1 < e2, e5, < 2,1 > >

3 e5, e1 2, 2 < e5, e1, < 2, 2 > >

4 e1, e3 1, 2 < e1, e3, < 1, 2 > >

5 e3, e1 1, 2 < e3, e1, < 1, 2 > >

6 e1, e4 1, 1 < e1, e4, < 1, 1 > >

7 e4, e1 1, 1 < e4, e1, < 1, 1 > >

8 e1, e2, e5 2, 1 < e1, e2, e5, < 2, 1 > >

9 e2, e5, e1 2, 1 < e2, e5, e1, < 2,1 > >

10 e5, e1, e3 1, 2 <e5, e1, e3, < 1, 2 > >

11 e1, e3, e1 1, 2 < e1, e3, e1, < 1, 2 > >

12 e3, e1, e4 1, 1 < e3, e1, e4, < 1, 1 > >

13 e1, e4, e1 1, 1 < e1, e4, e1, < 1, 1 > >

14 e4, e1, e2 1, 1 < e4, e1, e2, < 1, 1 > >

Table 7 Result of calculation of the sum of value list associated
with keys

S.No. Key(k) <K, Sum(Values)>

1 e1, e2 < e1, e2, < 3 > >

2 e2, e5 < e2, e5, < 3 > >

3 e5, e1 < e5, e1, < 4 > >

4 e1, e3 < e1, e3, < 3 > >

5 e3, e1 < e3, e1, < 3 > >

6 e1, e4 < e1, e4, < 2 > >

7 e4, e1 < e4, e1, < 2 > >

8 e1, e2, e5 < e1, e2, e5, < 3 > >

9 e2, e5, e1 < e2, e3, e1, < 3 > >

10 e5, e1, e3 <e5, e1, e3, < 3 > >

11 e1, e3, e1 < e1, e3, e1, < 3 > >

12 e3, e1, e4 < e3, e1, e4, < 2 > >

13 e1, e4, e1 < e1, e4, e1, < 2 > >

14 e4, e1, e2 < e4, e1, e2, < 2 > >
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Case III
Next case is when input trajectory is S = {e1} and only one
edge e1 is traversed so far. But multiple candidates ({e2, e3,
e4}) are there having event of traveling over e1 has oc-
curred. Probabilities of each candidate is as follows:

p e2j e1ð Þ ¼ 5
18

; p e3j e1ð Þ ¼ 9
18

; p e4j e1ð Þ ¼ 4
18

Hence Route_Predict(e1)→ e3.

Case IV
Next we consider a case when multiple edges are trav-
eled and input to Route_Predict function is {e1, e2}. Pos-
sible candidate for travel next is edge e5 having said
event of traveling over {e1, e2} has already occurred.
p(e5|e1, e2) = 1 and hence Route_Predict(e1, e2)→ e5

Case V
Next we consider a case when the user has traveled a
path which is not yet seen by CTW model. For example,
if the user has traveled path {e3, e4} but in CTW tree no
such path exists means this something which has not
occurred in past. Hence prediction function result
is Route_Predict(e3, e4)→ ε. This can happen when
user has reached the destination and there is nothing
to predict and in another case, it’s a new route. In
later case, new routes when, found should be sent to
model for learning.

Case VI
All scenarios described above predicts one next hop edge.
It is possible to predict multiple edges too. For example
from root node pðe1j εÞ ¼ 16

38 ¼ 0:42 is the highest among
all available candidates. For e1 next edge with the highest
probability is e3 with a probability of pðe3j e1Þ ¼ 9

18 ¼ 0:50.

Results and discussion
Map data and GPS location traces are two data sets re-
quired for implementation of proposed CTW based
route prediction. Data sets used are described below.
Digitized road network data is used for converting user

location GPS traces into an ordered set of edges. Road
network graph consists of two kinds of attributes:

1. Non-spatial features like width, length, speed, name
and turn restriction of the road represented by an
edge in the graph.

2. Spatial data that represents the geometry of road
network.

Both of these are sourced from Open Street Map
(OSM). OSM is user-generated maps platform where

crowdsourced model of data building is used. Open
Street maps creates and provides free geographic data
such as street maps and is published under an open con-
tent license, with the intention of promoting the free use
and re-distribution of the data (both commercial and
non-commercial) (https://www.openstreetmap.org), [19].
OSM has evolved as the biggest open map data platform
which is being used in research as well practical applica-
tions. We mention few of cases here but is not limited
to and application area is continuously growing. Mumbai
Navigator is similar experimental travel planning pro-
gram developed at IIT-Bombay for the city of Mumbai
[20]. On selecting the origin and destination of travel
from the list, produces a travel plan, with an estimate of
the total journey time including the waiting time. The
plan may be a multi-modal trip which may require one
to change buses or trains or travel by walk. It uses the
graphic map as the base and the line features represent-
ing the roads, stored in the Spatial Database. This pro-
ject is a proof of concept for using the spatial data
stored in spatial databases for Route planning. Rousell et
al. [21] used OSM data to extract landmarks. Tags in
OSM data like shops, station etc. are used upfront to de-
termine the landmarks and also other potential features
like way turn point which can identify landmark is also
explored in detail. Experimentation used real data sets
and established successful extraction of landmarks. Navi-
gation and mobility is the most effective use of OSM.
Zipf et al. [22] and Mobasheri et al. [23] explored the
suitability of OSM data for use by people with limited
mobility. Two aspects, graph network and routing en-
gine are two major components for such a system. As
we stated, OSM provides graph network for visualization
as well road network data which can be stored in spatial
databases like PostGIS for development of routing en-
gines. For applications like wheelchair routing, much
granular level data in a limited area is required like side-
walks etc. Data quality is a major concern in such an ap-
plication. As we observed in this work that geographical
data set is huge and for practical realization, a parallel
processing platform is required. Travel recommendation
is one of the top explored area in the research commu-
nity. Most of the research uses GPS traces to achieve
this. Sun et al. [24] used geotagged photos to identify
the location and routing. They used OSM data for rout-
ing and travel recommendation. Bakillah et al. [25] real-
ized this and explored the existing techniques in area
Big Data for their applicability in volunteered geographic
information (VGI). Based on Big VGI data routing issues
are explored and various challenges are addressed. The
best information of any area can be gathered from local
residents. Such a specialized information can be very
helpful in disaster management applications. Haworth et
al. [26] explored the application of OSM data in disaster
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management scenarios. Zook et al. [27] established use-
fulness of OSM data in relief during earthquake situ-
ation. OSM is makes map data in a digitized format
which makes web-based mapping services feasible. Using
this facility even without physically present, individuals
can make a considerable difference in relief and aid
agencies work. It is interesting to observe how OSM can
help in achieving a better environment. OSM not only

helps vehicle routing but with the granular data available
even routing for bicycles too can be done. Sun et al. [28]
explored various factors which influences usage of bi-
cycle sharing system. All routing data visualization and
analysis was done using OSM data. OSM provides vari-
ous kinds of GIS data like political boundaries, land use
data, water bodies and road network data etc. (https://
www.openstreetmap.org). Campus GIS is a project

Fig. 3 Snapshot of road network data extracted from OSM

Fig. 4 Snapshot of GPS data from Geolife
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developed at GISE Lab, Department of Computer Sci-
ence, IIT Bombay. This project Proposed to store the
spatial data in Spatial Enabled Databases. These data-
bases can be queried to view the resources like Build-
ings, electrical resources, free land and used land etc.
present in the campus. This Project is a demonstration
of showing multiple data layers of IIT Bombay over Web
using OSM [29]. Data is made available under open con-
tent license with the intention to promote free use. We
used only road network data from OSM. Data can be
downloaded using OSM interface (https://www.open-
streetmap.org) if the area is smaller. It depends upon
how much data is contained in a selected rectangle- in
urban areas it may be up to just a kilometer whereas in
rural areas, it can be several kilometers. If the area is lar-
ger, data can be downloaded from the official download
page of OSM (https://planet.openstreetmap.org/). Data
is available in various standard formats like image (.jpg,
.png etc.) or XML format which comes with extension
.osm. We used an .osm format which we parsed using

open source tool called Osm2pgsql (wiki.openstreetmap.org/
wiki/Osm2pgsql). It is used to convert OSM data into
PostGIS compatible .sql files. SQL data is them
loaded to spatial database PostGIS. We used GeoSer-
ver tool for all data visualization. GeoServer supports
easy connectivity to PostGIS database. Snapshot of
OSM Beijing road network is as shown in Fig. 3.
GPS data corpus used in this research work is from

Geolife project. GPS data collection effort was made as
Geolife project for the period from the year 2007 to 2012.
Geolife GPS dataset contains time-stamped positional in-
formation of around 182 users. It contains around 17,621
trajectories which have 24,876,978 GPS data points.
Length of all trajectories sums up to 1.2 million kilometers
and total duration of around 48+ thousand hours. A de-
vice used to capture data were GPS loggers as well GPS
phones with different recording frequencies. Of all the tra-
jectories 91% trajectories have data collection frequency of
every 1~ 5 s or 5~ 10 m per point and are dense data
(https://www.microsoft.com/en-us/research/publication/

Fig. 5 Prediction accuracy in terms of miles of trip completed

Fig. 6 Processing time of on single machine
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geolife-gps-trajectory-dataset-user-guide). Data collections
were done from users while performing a variety of activities
ranging from routine tasks like the movement from home
to office and back to home as well other non-routine tasks
such as site seeing, cycling, and shopping etc. Geolife GPS
data trajectory can be download from below link (https://
www.microsoft.com/en-us/research/publication/geolife-gp-
s-trajectory-dataset-user-guide/). Figure 4 shows GPS traces
plotted from Geolife GPS data corpus.
OSM road network data was loaded into PostGIS data-

base. GPS location traces downloaded from Geolife pro-
ject is flat file format was processed and loaded into
PostGIS database. PostGIS is used as staging area for all
data storage needs. Visualization of both GPS traces as
well road network data, open source tool is known as
Geoserver was used. GeoServer has the capability of
sourcing data from PostGIS data and can render data
over an HTTP connection. We moved data to and fro
between PostGIS and HDFS for distributed processing
of data. On Hadoop file system data was stored in col-
umnar data store known as HBase. During CTW model
training phase data was sourced from HBase for distrib-
uted processing as that was the most time-consuming
process and is a bottleneck in practical implementation.
After CTW tree constructed, the processed model was
brought to PostGIS. In route prediction phase and data
visualization, PostGIS database was used as data source.
Implementation and evaluation were performed in a
cluster of distributed nodes which consisted of 6 com-
pute nodes: one master and 5 worker nodes. Data was
replicated with a factor or 5 to make sure least time is
spent in data transfer latency. Each independent node in
the cluster had 8 GB internal memory and 64-bit pro-
cessor with 4 cores. Prediction accuracy with a portion
of trip completed is shown in Fig. 5. Construction of
CTW tree on a single node is shown in Fig. 6. CTW tree

construction time on Hadoop cluster consisting of 5
nodes computing 8 million GPS traces is shown in Fig. 7.
Table 8 shows the most important milestones in the area
of route prediction. Summarization is based on the
methodology used, horizontal scalability and accuracy.
The achievement of current work is- it is horizontally
scalable yet competes with state of art methodologies for
route prediction.

Conclusions and future work
In this work, the focus was on the construction of CTW
model in the distributed way from a huge corpus of GPS
location traces. GPS location was decomposed into
smaller units called user trips. User trips were map-matched

Fig. 7 Processing time of on cluster

Table 8 Comparision with most important researches in route
prediction

Authors Method for prediction Horizontal
scalability

Rate

Proposed CTW
Route Prediction

Context Tree
Weighting (CTW)

Yes 40–90%

Simmons et al.
(2006) [37]

Hidden Markov Model No 70–80%

Burbey et al.
(2008) [38]

Prediction by Partial
Match (PPM)

No 92%

Tiwari et al.
(2012) [39]

Closest Match Algorithm No 40%

Lung et al.
(2014) [40]

Hidden Markov Model No 68.3%

Neto et al.
(2015) [41]

Prediction by Partial
Match (PPM)

No 46%

Amirat et al.
(2017) [42]

Graph Mining No 76%

Froehlich et al.
(2008) [3]

Closest match No 40–90%

Tiwari et al.
(2017) [43]

Probabilistic Suffix Tree Yes 85
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to road network to convert the data into a set of edges. The
map matching of GPS data to road network edges reduces
the data size and make model construction faster than
building model from raw GPS data. CTW model was con-
structed with edges of CTW tree annotated with probability
of their occurrence. The model was then used in prediction
of the route given a partial trajectory. We observed that
model construction phase is the most time consuming but
over distributed cluster processing time decreases linearly
with the addition of nodes in the cluster. Once the model is
constructed, route prediction is not a time-consuming
process. It is important to note that quality of data used in
such a system really matters. OSM is a crowdsourced data
and data quality is a major concern [30]. However, lots of
research is in progress in this area and should be considered
for future work [31, 32].
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