
SOFTWARE Open Access

GeomDiff — an algorithm for differential
geospatial vector data comparison
Atle Frenvik Sveen

Abstract

Diffs, a concept known from source code version control systems such as git, is interesting for geospatial, event-
based workflows. We investigate how the native mathematical structure of vector geometries can be utilized in
order to create a diffing algorithm tailored to geospatial vector data. Diffing algorithms are a well-researched area
which dates to the 1970ies; however, we find that geospatial diffing operations tends to be carried out using
generic algorithms combined with a pre- and post-processing step. We created GeomDiff, an algorithm and
storage format tailored to geospatial vector data. The creation time, apply/undo time, and patch size of GeomDiff
was compared to three other generic algorithms by running an online experiment using 2.5 million real-world
geometry pairs from OpenStreetMap. We found that the GeomDiff algorithm performs better than or on-par with
the alternatives on point-geometries, and complex geometries with a small (< 500) vertex count. We argue that
there are both computation time and storage space improvements to be gained by using a tailored diffing
algorithm for geospatial vector data. These promising first results encourages further refinement of the algorithm in
order to handle complex geometries efficiently as well.

Keywords: Geospatial data management, Diffing, Event based workflows

Introduction
In computer science, a diff1 is a set of machine-
executable instructions to transform version n of source
code or documentation into version n + 1 [1]. The con-
cept of diffs is an essential component of source code
version control systems such as git [2], one of the funda-
mental building blocks of modern software engineering.
Other application areas also take advantage of the diff
concept, enabling real-time collaborative editing tools
such as Google Docs [3]. The concept of diffs is also im-
portant when working with event-based workflows,
where messages describing changes are a core compo-
nent [4]. A recent, geospatial, application of the concept
is “Sno” [5] which uses git to apply version control to
geospatial data.

The methods used for creating a diff and the format it is
stored in will affect both creation time, storage require-
ments, and apply and undo time. These metrics affect the
overall performance and requirements of a diff-based
workflow. Using a diffing algorithm and diff storage for-
mat tailored to geospatial vector data has the possibility to
provide an efficient, performant, and reliable event-based
workflow for geospatial data management.
Diffing algorithms specifically tailored to geospatial

data are rare in the literature. Thus, we implemented
“GeomDiff”, an algorithm for geospatial diffing. Geom-
Diff takes advantage of the native mathematical proper-
ties of geospatial vector data in order to improve the
performance of geospatial event-based workflows.
We review existing literature on diffing algorithms and

formats in general and provide an overview of existing
solutions for versioning of geospatial vector data using
diffs. The concepts used to implement the GeomDiff al-
gorithm is then explained and presented.
To evaluate the proposed algorithm, we perform a

large-scale experiment using real-life data in a controlled
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and replicable cloud-based environment. The GeomDiff
algorithm is compared to three other approaches to diff-
ing of geospatial vector data in order to investigate how
it performs on creation time, apply/undo time, and stor-
age requirements.

Implementation
Motivation
Creating a diff is the process of finding changes between
two versions of an object and describing them. Change
detection is in itself a topic that is widely studied with
regards to Remote sensing and image processing [6], as
well as computer science [7]. The term “diff” itself was
introduced by Hunt & MacIlroy [8], which described a
program which “[…] reports differences between two
files, expressed as a minimal list of line changes to bring
either file into agreement with the other”. The GNU diff
program is based on the work carried out by Miller &
Myers [9], and Myers [10], who found that the dual
problems of finding a longest common sub-sequence of
A and B and finding a shortest edit script for transform-
ing A into B are equivalent to finding a shortest/longest
path in an edit graph.
The diff program and its iterations are focused on

comparing text files and are therefore well suited for
tracking revisions to text and computer source code.
Variations of this approach serves as a building block of
version control systems [2]. Other researchers have fo-
cused on creating systems for detecting changes in hier-
archically structured information, such as data stored in
a database [11] and binary data [12]. Dedicated diff tools
and formats have also been created for formats such as
JSON [13] and XML [14].
We did not find examples of specialised diffing al-

gorithms for geospatial data in the literature, but
some approaches from the industry was identified and
are presented in the following. The GeoDiff library
[15] aims to simplify vector data management by
“keep[ing] track of changes, calculate the differences,
merge and consolidate the differences”. However, the
library seems to focus on changes at a dataset level.
A related idea is to apply version control concepts to
geospatial vector data. This has been attempted sev-
eral times by various actors. GeoGit, later renamed
GeoGig, was released in 2014 and “allows for decen-
tralized management of versioned geospatial data”
[16]. However, an inspection of the source code does
not indicate that the project employs diffs but stores
each separate change as a new geometry. A more re-
cent approach to version control of geospatial data is
Sno, which is built on top of git [5]. This means that
this system uses a text-based differ at its core, but
presumably with some modifications.

Principles of GeomDiff
Existing diffing algorithms for textual data, binary data,
or format-specific algorithms can be applied to geospa-
tial vector data using pre- and post-processing steps.
However, geospatial geometries are natively mathematic-
ally defined as vectors in N-dimensions. By converting
them to text or some other format, we lose the ability to
utilize mathematical relations to describe changes in the
geometries. This is the main idea behind GeomDiff; to
take advantage of the opportunities presented by the
mathematical nature of vector geometries in order to
create a more efficient algorithm.
Table 1 presents a selection of example geometries

in their original and modified state, along with an ex-
ample of a change script. For point geometries we
record the operation (create, delete, or modify) as
well as the change to the coordinate expressed as a
delta. In order to support reverting a change script,
the current value before deletion is recorded in a
delete operation.
While a point consists of a single coordinate pair,

other geometry types are more complex. These con-
sists of one or more, possibly nested, ordered lists of
coordinate pairs. Linestrings are described by a single,
ordered list of coordinate pairs, where each coordin-
ate pair describes a vertex. The linestring can be both
created and deleted in a similar fashion to a point,
but a modification is more complex. Changes to each
vertex can be described using the edit script outlined
for coordinates, but we need to keep track of the in-
dices of the changed vertices as well, as illustrated in
Table 1 (id = 4).
A polygon is even more complex, as it may contain

hulls. Thus, a polygon consists of n ordered lists of
coordinates, and each of these can be added, deleted,
or modified. In addition, each of the vertices in each
list can be added, deleted, or modified. However, just
as the coordinate edit script is used to represent each
change to a linestring, a linestring change script can
describe the change to each ring of a polygon (Table
1, id = 5). Using this hierarchical pattern, multi-
geometries are handled by adding another layer;
multi-point change scripts are lists of point change
scripts, multi-linestrings and multi-polygons extends
linestring and polygon change scripts in the same
manner.
Geospatial data is in many cases represented as a

collection of features. A feature is a combination of
a geometry and a set of textual or numeric attributes
or properties. In order to create a feature patch, the
attributes must be handled as well. While this is an
important aspect of a geospatial data versioning
workflow, the GeomDiff algorithm is not designed to
work on features. However, feature attributes are
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usually simple key-value pairs that can be repre-
sented using formats such as JSON or XML. As pre-
viously discussed, specialized diffing algorithms for
these formats exists and can be used. An example of
this approach is implemented in the attached file
FeatureDiffer.cs.

GeomDiff implementation
The main principles described in the previous section
are implemented using a generic Diff class, as out-
lined in Listing 1. Here, the value is a generic prop-
erty, which means that we can represent change
scripts for all geometry types using this class. In the

case of a point, the PointDiff inherits from Diff using
the CoordinateDelta as TComponent. Describing
changes to a linestring geometry is more complex, as
we need to keep track of the vertex indices. This is
where the Index and Operation properties on the Diff
class are used, as the LineStringDiff class uses a List <
PointDiff > as TComonent. The same pattern is re-
peated for the other geometry types.
While the presented class hierarchy represents changes,

it does not describe how these changes are detected. In
the case of point geometries, the difference is expressed by
the change in each coordinate, which is a straightforward
mathematical computation. For linestrings and other

Table 1 Edits to geometries and their associated change scripts. Ids 1–3 are modification, creation, and deletion of a point, id = 4 is
modification of a linestring by inserting, modifying, and deleting vertices. Id =5 is modification of a polygon by modifying one
vertex in the shell and deleting the hull. Geometries are described using the WKT format

Id Geometry Type Original Modified Change Script

1 Point (10.53 60.10) (10.52 60.10) Modify, (-0.01 0)

2 Point Null (10.53 60.10) Create, (10.53 60.10)

3 Point (10.53 60.10) Null Delete, (10.53 60.10)

4 LineString (1 1, 2 2, 3 3, 4 4) (0 0, 1 1, 2.5 2.5, 3 3) {0: Insert, (0 0), 1: Modify, (0.5 0.5) 3: Delete, (4 4)}

5 Polygon ((0 0, 10 0, 5 10, 0 0), (1 1, 2 2, 2 1, 1 1)) ((0 0, 10 0, 6 10, 0 0)) {0: Modify, {2: (1, 0)}, 1: Delete, (1 1, 2 2, 2 1, 1 1)}
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sequences of coordinates, we employ a generalized version
of the Myers diff algorithm [10], where the input is two
lists of components and a function to compare them. By
utilizing the recursive strategy presented above, this ap-
proach works both for comparing individual vertices in a
linestring and for comparing linear rings in a polygon.
Thus, diff creation can be implemented by combining this
approach with a method for compacting diffs by merging
consequent inserts and deletes into modify operations.
Applying a diff to a geometry follows the same recur-

sive pattern. A simple mathematical operation can patch
a single coordinate. A list of components (coordinates,
linear rings, or geometries) is patched using the Patch-
List method, reproduced in Listing 2. Undo operations
use the same method, but a pre-processing step revers-
ing the diff is applied first.
Another important aspect is a storage format for the

created diffs. Serializing and deserializing the generated
C# objects is an easy solution, but this introduces an un-
necessary coupling to a specific implementation. In
addition, this is not an efficient approach in terms of
storage requirements.
Thus, we created a binary format for storing diffs, in-

spired by the WKB (Well Known Binary [17]) format. The

format consists of a header, describing the geometry type
and dimensions, and the actual diff elements. Writer and
reader implementations to convert to and from C# objects
are created as part of the implementation.

Benchmark design and implementation
The performance of the GeomDiff algorithm was
examined by performing a large number of diff creation,
apply, and undo operations on data from OpenStreet-
Map. In addition, the same operations were performed
on the same data, using three other diffing implementa-
tions. This ensures that we can perform a statistical ana-
lysis to test our hypotheses.
The benchmark was performed in a Microsoft Azure

cloud environment. This allows for easy scale-out in
order to handle high workloads in parallel. Furthermore,
it ensures consistent hardware performance at a reason-
able price. The setup consists of a virtual machine run-
ning a PostgreSQL/PostGIS database, an Azure Function
App, and an Azure storage account for message passing
and temporary storage. In addition, NodeJS and Python
scripts were developed to import test-data, orchestrate
the benchmark, and analyse the results.
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An extract from the open licensed OpenStreetMap
(OSM) dataset [18] was used as test data. A full his-
tory extract for Norway was manually downloaded
from geofabrik.de and imported to a PostGIS data-
base, using a custom-made script [19]. To prepare the
dataset for the benchmark, a series of queries was
run to identify geometry pairs. A geometry pair is de-
fined as two versions of the same geometry. In cases
where the OSM dataset had more than two versions
of a geometry, we chose the minimum and maximum
version to represent the two versions. Since the OSM
data model stores all linestring and polygon vertices
as points, and referencing them from a “ways” table,
we selected all points with at least one tag to repre-
sent points. Linestrings and polygons was created
from the ways table, based on whether they were
closed or not. This process created a benchmark
dataset consisting of 1,335,489 point-, 813,503 line-
string-, and 433,776 polygon-pairs. For each line-
string- and polygon pair the NumVertices variable
(Eq. 1) was computed and stored.

NumVertices ¼ avgðnumVertices geometryv1
� �

;

numVertices geometryv2
� �Þ

ð1Þ

The test pipeline consists of an Azure storage account
and a Function App, as depicted in Fig. 1. The data flow in
this setup is highly parallelisable and can be scaled to han-
dle increased workloads with minimal effort. The first stage
of the pipeline is a storage queue (GeometryTasks), popu-
lated by a NodeJS script. This queue contains one message
per geometry pair in the benchmark dataset, consisting of
an id and two version numbers, as well as the geometry
type. Attached to this queue is a function app (Geometry-
Handler) which fetches the corresponding geometries from
the PostGIS database and stores them in a blob store (Geo-
metryStorage). In addition, this message puts four messages
on a second queue (BenchmarkTasks), with a blob id and a
differ name. The second function app (BenchmarkFunction)
is triggered by the BenchmarkTasks queue and fetches the
geometry pair from GeometryStorage and runs the bench-
mark using the indicated algorithm. On completion the re-
sults are saved to a table storage (ResultsStorage).
The actual benchmark of the algorithms under test are

performed in the BenchmarkFunction function app. This
is a serverless instance running .NET core code [20].
The actual algorithm implementations are written to
conform to a common interface, as depicted in Listing 3,
and made available as a NuGet package, which is
imported by the BenchmarkFunction app.

Fig. 1 The Azure pipeline for running the benchmark. The GeometryTasks queue is loaded with one message per geometry pair. The GeometryHandler
processes each message, by fetching the two geometries in the pair and storing them in a blob store. It then puts four messages on the BenchmarkTasks
queue, one for each algorithm under test. This message has a reference to the blob id of the geometry pair. The benchmark function then loads the geometry
pair and executes the three operations (create, apply and, update) using the specified algorithm, while logging time usage. The results are then stored in a
table storage for later retrieval and analysis
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The algorithm implementations under test are listed in
Table 2. The three other algorithms are based on open
source implementations of three different diffing for-
mats; textual data, binary data, and JSON-data. All these
algorithms require a pre- and a post-processing step,
where the geometry is converted to the appropriate for-
mat and back. These algorithms where chosen as they
represent existing approaches to handling diffing of geo-
spatial vector data. The Bsdiff algorithm [12], used in
the BinaryDiff implementation does not support the
undo operation, but we still chose to include it in the
benchmark, as it represents another approach to diffing.
The pre- and post-processing steps use the open source
NetTopologySuite [21] library to convert the geometries
into appropriate formats. Well Known Text (WKB) [17],
Well Known Binary (WKB) [17], and GeoJSON [22] was
chosen as formats to convert to text, binary, and json,
respectively.

Results
For each of the three geometry types in the test dataset
we performed hypothesis testing on four metrics:

� Creation time: The time it takes to create a diff
given two versions of a geometry.

� Apply time: The time it takes to create version n + 1
of a geometry, given version n and a diff.

� Undo time: The time it takes to roll back to version
n of a geometry, given version n + 1 and a diff.

� Patch size: The physical size of the created diff.

We expect the GeomDiff algorithm to exhibit faster
creation-, apply- and, undo-time for point, linestring and

polygon geometries compared to the other algorithms.
In addition, we expect the GeomDiff algorithm to pro-
duce smaller patches.
The statistical testing was performed using the follow-

ing procedure, implemented as a Python script [23]. All
statistical tests were performed using a significance level
of 0.05. For each metric of each geometry type the re-
corded data for each of the four algorithms was loaded.
First, all errors were counted, recorded (see Table 6),
and then removed before further analysis. An error is ei-
ther an exception thrown by the code, or an instance
where the patch did not create the expected result.
Second, a D’Agostino and Pearson’s test [24] was ap-

plied to check each group for normal distribution. Since
none of the groups were normally distributed (p < 0.05),
a Kruskal-Wallis H-test [25] was then applied to test H0,
that the samples from all algorithms came from the
same distribution. Since H0 was rejected in all cases (p <
0.05), we continued with a post hoc test to perform pair-
wise comparisons between the four algorithms. Using
Conover’s test [26], we found that none of the pairs
where statistically similar (p < 0.05). This means that all
differences between the mean values for each algorithm
are significant.

Point geometries
For point geometries (Table 3), a total of 1,335,489
geometry pairs were checked for each algorithm. Overall,
the BinaryDiff algorithm is slower than the fastest algo-
rithm by a factor of 1000 on create and apply. The Text-
Diff and JsonDiff algorithms show comparable results,
apart from patch size. The GeomDiff algorithm produces

Table 3 Benchmark results for point geometries. Best results in each case in bold. The standard deviation of patch size for points
using the GeomDiff algorithm is 0, as a point change is described using two doubles. This means that the size of a point patch will
always be the size of two doubles and metadata of a fixed size

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 0.22 10.92 0.47 15.64 0.32 2.32 54.0 30.0

JsonDiff 0.38 7.21 0.21 2.51 0.16 1.62 184.0 94.0

BinaryDiff 190.88 272.07 67.39 131.74 – – 168.0 20.0

GeomDiff 0.03 1.80 0.02 0.58 0.01 0.40 25.0 0.0

Table 2 Diffing algorithms used in the benchmark

Algorithm Format Library Link

TextDiff Text Diff Match Patch https://github.com/google/diff-match-patch

JsonDiff JSON jsondiffpatch.net https://github.com/wbish/jsondiffpatch.net

BinaryDiff Binary Deltaq https://github.com/jzebedee/deltaq

GeomDiff Vector Geometry GeomDiff https://github.com/atlefren/GeomDiff
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the smallest patch in the shortest time and is also the
fastest to apply and undo.

Linestring geometries
For linestring geometries (Table 4), a total of 813,503
geometry pairs were checked for each algorithm. The
mean number of vertices is 24, the 99th percentile 236.
When it comes to performance, the GeomDiff algorithm
is considerably slower to create patches, albeit with a
large standard deviation, but it is still the fastest on cre-
ate and undo time. The JsonDiff algorithm is the fastest
to create patches, but the patches created by the JsonDiff
algorithm are on average larger than patches created by
the BinaryDiff algorithm by a factor of 8.5.

Polygon geometries
For polygon geometries (Table 5), a total of 433,776
polygon pairs with a mean vertex count of 28 (99th per-
centile 299) were checked. In terms of performance, the
polygon dataset exhibits much the same trends as the
linestring data. The standard deviations are large, and
the BinaryDiff and GeomDiff algorithms are consider-
ably slower than TextDiff and JsonDiff when it comes to
create time, but at the same time they produce the smal-
lest patches.

Error counts
The error counts (Table 6) show that the GeomDiff al-
gorithm encountered 22 and 34 create errors, and 33
and 45 patch and undo errors on linestrings and poly-
gons, respectively. The TextDiff algorithm failed to undo
38,480 linestring pairs (5%) and 18,396 (4%) polygon
pairs correctly.

For point geometries the rates are close to zero (< 1
‰) for all metrics.
The create errors for the TextDiff algorithm are all

“Invalid URI: The Uri string is too long.”. This error
originates in the Diff Match Patch library, which uses
URL encoding provided by the C# standard library. This
shows that the limiting factor for string lengths, and by
extension vertex count, are the URL encoding method.
For the GeomDiff algorithm, all create errors are

“Timed out after 60000 ms”. This is a hard limit built
into the GeomDiff library to avoid long-running opera-
tions to block for an unreasonable amount of time.

Vertex number effects
For linestring and polygon geometries, the GeomDiff al-
gorithm exhibits an unusually large standard deviation
on the Create Time metric. In order to investigate pos-
sible causes for this, we identified the upper 99 percent-
ile and removed observations with values higher than
this. This is shown in Table 7. We see that by removing
1% of the observations the standard deviation is reduced
by two orders of magnitude.
One possible explanation for this is that the create

time for the GeomDiff algorithm increases as the num-
ber of geometry vertices increase. This explanation is
supported by the create failures on 22 linestring and 34
polygon geometries. In these cases, the algorithm ran for
60 s before timing out. Examining the geometries which
caused the errors, we find an average vertex count of
1677 and 1576 for linestrings and polygons, respectively.
For the top 1 (slowest) percentile, the vertex count aver-
ages were 300 and 364. These numbers are both a sub-
stantial increase from the full population, which on
average has a vertex count of 24 for linestrings and 28

Table 5 Benchmark results for polygon geometries. Best results in each case in bold

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 7.53 70.12 1.08 39.82 0.92 7.22 481.37 2023.27

JsonDiff 3.50 76.01 1.15 20.80 0.95 10.60 2970.73 15,035.43

BinaryDiff 224.40 571.71 69.11 272.37 – – 301.82 684.04

GeomDiff 118.09 5159.74 0.39 79.77 0.25 7.02 306.00 1397.86

Table 4 Benchmark results for linestring geometries. Best results in each case in bold

Algorithm Create Time (ms) Apply Time (ms) Undo Time (ms) Patch Size (b)

Mean St.dev Mean St.dev Mean St.dev Mean St.dev

TextDiff 9.01 58.56 1.00 10.98 1.04 4.61 623.44 1733.22

JsonDiff 2.27 35.96 1.12 10.08 1.06 8.23 3064.38 9656.37

BinaryDiff 183.47 333.88 57.07 159.81 – – 357.16 635.37

GeomDiff 57.83 3281.33 0.21 8.20 0.19 5.22 419.63 1355.67
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for polygons. In other words, large vertex counts seem
to indicate long running times.
To further investigate whether the vertex count vari-

able influences create time, we calculated the Pearson
correlation coefficient [27] between creation time and
vertex count, as shown in Table 8. We see that the cor-
relation change between the whole population and the
top 1 percentile is substantial for the GeomDiff algo-
rithm (+ 0.17 / + 0.81), while it is relatively stable or de-
creasing for the other algorithms (- 0.02 / - 0.01 for the
TextDiff algorithm). Thus, we suspect that the vertex
count in linestring and polygon geometries affects the
creation time for the GeomDiff algorithm significantly,
and especially for large numbers of vertices.
By grouping the create time results by vertex count

and computing average creation time for each group
(Fig. 2 and Fig. 3), we find that all algorithms except the
BinaryDiff algorithm show an increase in creation time
with increasing number of vertices. However, for the
GeomDiff algorithm, there is a sharp increase when ex-
ceeding a vertex count of 500, for both linestrings and
polygons.

Discussion
Our data shows that the GeomDiff algorithm outper-
forms the other tested algorithms by a large margin
when working with point geometries. It creates the
smallest patches in the shortest time and is also fastest
at applying and undo patches.
When it comes to more complex geometries (Table 4

and Table 5), the results are more varied. The JsonDiff
algorithm is the fastest for creating both linestring- and

polygon-patches, while the BinaryDiff algorithm creates
the smallest patches. However, the JsonDiff algorithm
creates the largest patches, while the BinaryDiff algo-
rithm is the slowest one in both creation and apply time.
Moreover, this algorithm does not support the undo
operation.
The results for the GeomDiff algorithm with regards

to linestrings and polygons are more complex. The algo-
rithm is the fastest on both apply and undo, and it pro-
duces patches not much larger than the BinaryDiff
algorithm. However, the creation time shows a large
variance. Based on our test data, we found that this is re-
lated to number of vertices in the diffed geometries.
When this exceeds 500 vertices, we see a sharp increase
in creation time. In addition, we recorded several occur-
rences where the algorithm timed out after 60 s for some
geometries with large vertex counts.
However, both the mean and 99th percentile of vertex

counts in both linestrings and polygons are considerably
lower than 500 in the OSM test-dataset. This means
that, for datasets comparable in complexity to OSM, the
vertex issue is not likely to be major. In addition, diffs
are usually created only once, but applied and undone
multiple times. Thus, faster apply and undo speeds are
more important than creation times. Nevertheless, the
fact that the GeomDiff algorithm degrades, and some-
times fails, on geometries with a high vertex count is not
ideal. This behaviour is worth determining the cause of
and remedy before the algorithm can be considered
ready to use in a real-life situation where performance
and repeatability is essential.

Table 7 Create time for linestring and polygon geometries with
the upper 99 percentile values excluded from the analysis

Algorithm Linestring Polygon

Mean St.dev Mean St.dev

TextDiff 4.60 14.14 2.72 9.20

JsonDiff 1.12 2.46 0.99 2.33

BinaryDiff 165.05 180.63 180.43 195.48

GeomDiff 2.44 12.68 1.28 7.62

Table 8 Pearson correlation coefficient between creation time
and vertex count for the full population and the top 1
percentile

Algorithm Linestring Polygon

All Top 1% All Top 1%

TextDiff 0.50 0.48 0.45 0.44

JsonDiff 0.30 0.23 0.27 0.16

BinaryDiff 0.01 0.03 0.01 -0.01

GeomDiff 0.26 0.43 0.30 0.48

Table 6 Error counts for the tested algorithms, grouped by geometry type and operation. A create error represents a situation
where the algorithm threw an exception during execution, while apply and undo errors represents situations where applying or
undoing a diff does not produce the expected geometry

Algorithm Point Linestring Polygon

Create Patch Undo Create Patch Undo Create Patch Undo

TextDiff 0 1 4 3 3 38,480 1 1 18,396

JsonDiff 0 1 1 0 0 0 0 0 0

BinaryDiff 0 1 – 0 0 – 0 0 –

GeomDiff 0 1 1 22 33 33 34 45 45
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The error rates are low for all algorithms, except for
the TextDiff undo algorithm. One possible explanation
for these errors are floating-point issues. Since the Text-
Diff algorithm uses the text based WKT format as an
intermediary step, it is possible that some rounding er-
rors have been introduced when the undo operation is
applied. However, we have not investigated this issue
further.
One shortcoming of our experiment is that the test-

dataset did not include multi geometries. This is because
the OSM dataset does not contain multi points and
multi linestrings, and that multi polygons were consid-
ered too time-consuming to create from the OSM data
format. However, we suspect that multi-geometries will
show results similar to or worse than linestrings and
polygons. Since multi-geometries adds more layers to
the recursive hierarchy of components, more time will
be spent traversing this hierarchy.
The use of a commercial cloud platform as the testbed

for our experiment allowed us to test a large number of
operations in parallel at a reasonable price. This would

have been costly and complex to achieve using on-site
hardware. However, each execution of a function app
runs on an instance. This instance runs multiple concur-
rent executions in parallel, which mean that executions
may compete for the same CPU resource [28]. This may
affect the performance of each execution, compared to
running them in complete isolation. However, we argue
that the large amount of geometries tested will mitigate
this issue and spread the effect evenly.

Conclusions
We have shown that efficient diffing algorithms for geo-
spatial vector data can be created by taking advantage of
the native mathematical properties of the data. The
GeomDiff algorithm performs comparable to, or better
than, the three generic diffing algorithm we have com-
pared it to. However, it suffers from performance deg-
radation as the vertex count increases. In many
situations this will not pose a problem, but it is a serious
shortcoming that should be addressed.

Fig. 2 Average create time for linestring patches, grouped by vertex count
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Geospatial diffing formats have several use-cases. Stor-
age of spatiotemporal data is one example. In the “object
change” model described by Worboys [29], significant
storage reductions can be achieved by storing each
change as a diff as opposed to storing the complete,
changed version. Geospatial diffs will also be a key con-
cept when designing a system that uses the principles of
Event Sourcing [30] to handle geospatial data.
We have not found any published geospatial diffing al-

gorithms in the literature. However, we found some ex-
amples from the industry. We suspect that this indicates
that if work on this topic has been carried out, it has
been done in the industry. Another possibility is that
when the need for geospatial diffing has occurred, gen-
eric diffing algorithms have been found sufficient. In the
light of our findings we question this conclusion, as we
have shown that it is possible to create tailored algo-
rithms for geospatial diffing that outperforms generic
algorithms.
With the increasing amount of geospatial data being

collected, created, and updated we foresee an increased
demand for efficient strategies for storage and

processing. Event sourcing and object change models are
an interesting approach to this challenge. Since geospa-
tial diffing algorithms are a key aspect of these tech-
niques, we encourage more research into this field.

Availability and requirements

� Project name: GeomDiff
� Project home page: https://github.com/atlefren/

GeomDiff
� Operating system(s): Platform independent
� Programming language: C#
� Other requirements: .NET Standard 2.0

compatible .NET implementation
� License: BSD-3-Clause
� Any restrictions to use by non-academics: No

restrictions apart from those imposed by the license.

Abbreviations
JSON: JavaScript Object Notation; OSM: OpenStreetMap; WKB: Well Known
Binary; WKT: Well Known Text; XML: Extensible Markup Language

Fig. 3 Average create time for polygon patches, grouped by vertex count
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