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Abstract

in multitemporal composites.

Background: Principal components analysis (PCA) is based conventially on the eigenvector decomposition (EVD).
Mean-centering the input data prior to the eigenanalysis is treated as an integral part of the algorithm. It ensures that
the first principal component is proportional to the maximum variance of the input data. Equivalent to EVD, but
numerically more robust, is the singular value decomposition (SVD). Mean-centered data subjected to SVD, yield
transformation coefficients identical to EVD. Nevertheless, mean-centering is optional in SVD. Avoiding to center the
input data, results in generic first component that mainly reflects their mean. This may, however, detect more
accurately distinct clusters in PCA-based change detection applications.

Methods: In remote sensing, PCA transforms multi-spectral bands into a new coordinate system. The first, among
the transformed components, contain the variance of unchanged landscape features. Succeeding components may
contain an enhanced variance of changed features. Such is the case of burned surfaces appearing as distinct clusters

Conclusions: Within this framework, a non-centered SVD may increase the spectral separability of burned clusters
among other features in some of the higher order principal components.

Keywords: PCA, EVD, SVD, Mean-centering, Scaling, Burned areas, Spectral enhancement

Background

The goal of this paper is to set the theoretical framework
of PCA in remote sensing of burned areas. Specific objec-
tives are to introduce the reader to the (i) EVD-based
PCA and the significance of mean-centering and scaling
as pre-processing steps; (i) SVD, an alternative solu-
tion to PCA and its difference against EVD; (iii) existing
EVD- and SVD-based PCA applications in remote sens-
ing; (iv) the methodological concepts of remotely sensing
burned areas via the EVD-based PCA; (v) four SVD-based
PCA versions for burned area mapping (vi) the impli-
cations of mean-centering and scaling multi-dimensional
data prior to PCA. Finally we link the presented theo-
retical concepts to the remote sensing of burned areas
and suggest that a non-centered SVD may perform
better than the EVD-based PCA in capturing burned
areas.
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Principal components analysis

Principal components analysis (PCA) or transformation
(PCT) is a non-parametric, orthogonal linear transforma-
tion of correlated variables [1, 2]. Being probably the old-
est and most well-known multivariate analysis technique,
PCA is useful in a wide range of applications including
data exploration and visualisation of underlying patterns
within correlated data sets; decorrelation; detection of
outliers; data compression; feature reduction; enhance-
ment of visual interpretability; improvement of statisti-
cal discrimination of clusters; ecological ordination; and
more [3].

While the transformation can expose the internal struc-
ture of multivariate data sets, it is by no means optimised
for class separability. PCA does not analyse class labels but
uses global statistics to derive the transformation parame-
ters [4]. Hence, there is no guarantee that the directions of
maximum variance enhance class separabilities. It is up to
the user to identify a high signal-to-noise ratio, via visual
or quantitative inspection, of a feature of interest within
the principal components. In short, PCA supports cluster
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seeking applications but cannot replace the need for user
input.

Applying the EVD-based principal components trans-
formation (henceforth noted as PCA) assumes linearity
(or high data correlation); considers the statistical impor-
tance of the mean and the variance-covariance; and bases
on large variances to highlight useful discrimination prop-
erties. In its classical form, the algorithm of the transfor-
mation bases on EVD and performs the following steps:
i) organises the data set in a matrix, ii) mean-centers
the columns of the matrix (henceforth also referred to
as mean centering or just centering'), iii) calculates the
covariance matrix (non-standardised PCA) or the correla-
tion matrix (standardised PCA, a step also known as scal-
ing), iv) calculates the eigenvectors and the eigenvalues of
the data’s variance-covariance or the correlation matrix,
v) sorts the variances (i.e. the eigenvalues) in decreasing
order, and finally vi) projects the original dataset sig-
nals into what is named Principal Components, or scores,
by multiplying them with the eigenvectors which act as
weighting coefficients.

Mathematically, PCA can be described as a set of
p-dimensional vectors of weights or loadings wy), =
(W1, ..., Wp)(k that map each row vector x;, of a zero-
mean matrix X, to a new vector of principal component
scores t; = (t1, ..., tm)(). The scores are given by
by = %G) W fori=1, ..., mandk =1, ..., mina
way that the individual variables of ¢ capture successively
the maximum possible variance from x, with each loading
vector w constrained to be a unit vector [3]. The complete
decomposition of X can be given as

Y = WX (1)

where W is a p-by-p matrix (noting that W’ is transposed)
whose columns are the eigenvectors of X’ X determined by
the algorithm and Y the matrix of the transformed data.
In the case of remotely sensed multispectral images, we
consider n spectral response observations (pixel values)
on b spectral bands. Following the steps outlined above,
the algorithm using the covariance matrix

1. Starts with arranging the spectral responses as n
vectors x1, ..., x, and placing them as rows in a
single matrix X of dimensions n x b where the
columns correspond to the b spectral bands.

2. For each band b, its mean m is subtracted from all of
its spectral response values. Hence all bands present
now a zero mean.

3. Next, it calculates the covariance (or correlation)
matrix X, of the input data given by

n

> (g — m) (g — m)’
Ty == )
n—1
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We emphasize that calculating the covariance matrix,
does actually mean-center the data beforehand. It is
of explanatory importance, however, useful to
present it as a separate step. The covariance describes
the scatter or spread of the spectral responses in the
multispectral space. It is symmetric and therefore has
orthogonal eigenvectors and real eigenvalues.
Alternatively, to perform PCA on the correlation
matrix, instead of the covariance matrix, each band is
standardized, i.e. divided by its standard deviation.

4. Successively, the algorithm computes the matrix D
of eigenvectors which diagonalises the covariance
matrix X,. The respective equation is

A =D'%.D 3)

where A is the diagonal matrix of eigenvalues of Zy.
It is shown that the covariance matrix of the
transformed data X, can be identified as the diagonal
matrix of eigenvalues of ¥, [5]. The relationship
between Xy and X is

%, =D'S,D (4)

where Xy the covariance of the transformed data,
which must be diagonal, and D the matrix of
eigenvectors of ¥, provided that D is an orthogonal
matrix.

5. The last step sorts the eigenvectors in D and the
eigenvalues in matrix A in decreasing order. The
eigenvector with the highest eigenvalue, which
corresponds to the highest variance, is the first
principal component of the data.

Mean-centering, scaling and the eigendecomposition
Mean centering the multivariate data matrix is considered
to be integrated in EVD. It is achieved by subtracting the
mean of each variable from its own observations. This
results in a zero mean vector of observations [6] and
successively a zero mean matrix. Graphically, this action
translates to an origin shift of the original scatter plot
in its gravity center without altering its shape (Fig. 1).
This is justified in terms of finding a basis that minimises
the mean square error of approximating the original
data.

Scaling the centered variables to have unit variance
before the analysis takes place is optional. This action,
also referred as standardisation, forces the variables to
be of equal magnitude by altering the range of the point
swarm (Fig. 2). This is required when variables are mea-
sured in different units and may be useful when their
ranges vary substantially. We note that scaling uncentered
variables does not result in unit variance. The useful-
ness of this combination may even be questionable from
a matehematical point of view. However, we include this
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Fig. 1 Conventional mean-centered EVD-based PCA on the covariance matrix of a bi-variate data set composed by a post- and a pre-fire MODIS
surface reflectance band 2. Black dots and grey asterisks are respectively samples of burned surfaces and vegetation. The original coordinate system
(light greyed) has been shifted after centering. The point-scatter has been rotated after PCA to the direction in which the spread of the data onto the
new axes (dashed axes, PC1 and PC2) is maximised. These are restricted to be orthogonal

combination in our analytical framework for the sake of
experimental completeness.

The eigendecomposition of a symmetric matrix yields
eigenvectors. Each eigenvector has a positive eigenvalue.
The eigenvectors define the direction of the variation
and the eigenvalues define proportionally the length
of the axes of variation [7]. Geometrically, the first
principal component points in the direction with the
largest variance. The second component; being orthog-
onal to the first, points to the second largest vari-
ance. The same pattern is repeated for all remaining
components.

PCA rotates actually the point-scatter around its cen-
troid and aligns to the coordinate axes so as to maximise
the spread of the data projected onto them. It may be for
instructive reasons that authors refer to PCA as a rota-
tion of the coordinate axes [8]. This spread is the sum
of squares of the data’s coordinate points along the axes,
also known as principal component scores. In addition,
the new axes are not correlated. The scores individu-
ated by centered data are expressed as deviations from
the mean of the variable. The rotation translates mathe-
matically in a weighted linear combination of the original
dimensions.

SVD, an alternative solution to PCA

Another matrix decomposition algorithm which, among
other uses, computes the least squares fitting of data, is
the Singular Value Decomposition (SVD). The algorithm
yields the minimum number of dimensions required to
represent a matrix or linear transformation. Clark and
Clark [9] describe SVD as being essentially equivalent
to a least squares method but numerically more robust
according to [10]. Wu [11] notes that better numerical
properties are important when higher order dimensions
are required. Specifically, when computing the covariance
matrix (equation 2), prior to EVD, it is the multiplica-
tion of the matrix X by itself that may lead to loss of
numerical accuracy. EVD, upon which the conventional
PCA is based, and SVD have similar properties and prod-
ucts. Furthermore, PCA can be seen as SVD applied on
a column-centered data matrix [6]. Both algorithms are
non-sequential and extract hidden variables simultane-
ously. Yet they differ in several aspects. EVD works on the
covariance (or correlation) matrix while SVD operates on
the raw data matrix. The main difference of interest, in
this work however, is that centering the columns of the
input data is performed by default within the framework
of EVD-based PCA, while it is optional in SVD.
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Fig. 2 Conventional mean-centered EVD-based PCA on the correlation matrix, thus scaled, of a bi-variate data set composed by a post- and a
pre-fire MODIS surface reflectance band 2. Black dots and grey asterisks are respectively samples of burned surfaces and vegetation. The original
coordinate system (light greyed) has been shifted after centering. The shape of the point-scatter has altered after scaling and rotated after PCA to the
direction in which the spread of the data onto the new axes (dashed axes, PC1 and PC2) is maximised. These are restricted to be orthogonal

To describe SVD mathematically, let X denote a matrix
of n observations by p variables. The singular value
decomposition of X is

X =ULA (5)

where U, A are respectively n x r and p x r matrices, each
of which have orthonormal columns so that L'l = I, and
A’A = I; Lisan r x r diagonal matrix and r is the rank of
X. The columns of U are orthogonal unit vectors of length
n called the left singular vectors of X. The columns of A
are orthogonal unit vectors of length p called the right
singular vectors of X.

Jolliffe [3] states that SVD provides a computationally
efficient method of actually finding PCs and that it pro-
vides additional insight into what a PCA actually does. He
proves the relation between SVD and PCA in that

p
ULA = XY “ara) = X (6)

x=1

where ar, k = (r +1), (r+2), ..., p, are eigenvectors
of X'X corresponding to zero eigenvalues. Essentialy, the

right singular vectors A of X are equivalent to the eigen-
vectors of X'X, while the singular values in L are equal to
the square roots of the eigenvalues of X’X. These corre-
spond to the coefficients and standard deviations of the
principal components for the covariance matrix.

Applications in remote sensing

Change detection via PCA

In remote sensing studies, PCA is among the most
common change detection techniques [12]. The first
newly derived components hold the variance related to
unchanged landscape features, while succeeding com-
ponents may feature an enhanced variance of the
changed features. Early works demonstrate the usabil-
ity of PCA in remote sensing ([13—20]). Multi-spectral
bands treated as columns build up a data matrix,
which is then centered and whose variance-covariance
(or correlation) matrix is the basis for the compo-
nents extraction algorithm. In addition, past litera-
ture on the subject, includes various explorations such
as using unitemporal [17, 21, 22] and multi-temporal
[18, 21, 23-28] multi-spectral data sets. These stud-
ies clearly depict multi-temporal approaches as more
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effective in terms of both qualitative and quantitative
accuracy.

Other studies consider issues related to computa-
tional efficiency, disk storage capacities, and more. For
instance, spectral contrast mapping—also known as selec-
tive PCA—uses two bands that are only weakly correlated
to each other as an input and produces two compo-
nents from which the second summarizes the changes
[23, 25, 29]. Harsanyi and Chang [30] developed a method
called noise-adjusted PCA in which they suppress unde-
sired spectral signatures in order to maximize the signal-
to-noise ratio of a particular signature of interest. The
result is a single component identified as a classification
image of the spectral feature of interest. Noteworthy in
their work, is the fact that centering was not performed
before the transformation. Jia and Richards [4] proposed
a segmented and possibly multi-staged PCA to deal with
computational load issues as well as biases introduced by
bands of very high variances. Limitations of this kind have
been mostly resolved through the rapid advancement of
computer hardware technology allowing researchers to
focus more on accuracy issues. For example, [31] demon-
strate a multi-temporal and multi-sensor land-use change
detection that involves a hybrid classification scheme.

Image processing via SVD

SVD has been extensively used in various disciplines
[11, 32]. Its applicability, though, in digital image pro-
cessing, relies on the fact that multi-spectral remotely
sensed spatial data are naturally redundant [33]. Appli-
cations include singal estimation in spectral data [34];
classification; data compression and noise reduction
[35, 36]; identification of spectral signatures [9]; and fea-
ture reduction [33].

To exemplify, [33] compared the performance of SVD
to PCA as a feature reduction step on images containing
fewer than 100 bands prior to forest/non-forest classifi-
cations. In their study, SVD outperformed PCA in terms
of classification accuracy and computational time saving.
While most SVD-based applications report higher effi-
cacy, in terms of computation and classification results,
[9, 37] noted, however, that SVD can be less robust with
increasing noise (low signal-to-noise ratio).

Notwithstanding, the use of SVD in remote sensing
studies appears somewhat limited. In the past this was
attributed to data storage and processing being expensive,
especially for very large datasets [34].

Data and concepts

MODIS daily surface reflectance products

The source data for this work are a post- (20072) and
a pre-fire (2006%) MODIS Daily L2G surface reflectance
products (MODO09%). Their spatial resolution is 250 m and
their extent covers Peloponnese in Greece (geographical

(2017) 2:17
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extent: south= 36, east= 23.6, north= 38.5, west= 21).
These products contain quality filtered and atmospheri-
cally corrected observations®.

The data consist of infrared observations extracted from
MODIS’ band 2 (0:858 Am). The samples concern burned
and vegetated surfaces. These were delineated on-display
based on cloud-free and top-quality MODIS observations

by utilising MODIS’ Quality Data® 7 8 .

Spectral enhancement of burned area clusters via PCA
PCA can enhance the spectral discrimination between
burned and unburned land [16, 21, 23, 24, 38]. The ini-
tial poor discrimination of burned observations (pixels)
among other classes (such as sparse vegetation and water)
is enhanced in some of the higher order principal compo-
nents. We visualise the rationale behind the technique in
bi-dimensional PCA scatterplots (Figs. 1, 2). Regardless,
we reiterate that PCA does not isolate distinct clusters—it
only enables reviewing data from possibly more useful
perspectives.

Figure 1 presents a scatterplot of an untransformed bi-
variate data set composed by pre-fire (x-axis) and post-fire
(y-axis) surface reflectance observations. The distribu-
tion of both the pre- and the post-fire observations are
visualised in histograms (light grey coloured) on top of
each main axis. Samples of vegetation (dark grey aster-
isks) and burned areas (black dots) are drawn on top of
the surface reflectance observations (grey dots). Their dis-
tribution is reflected in mini-histograms (black and dark
grey respectively) on top of the larger (grey) histogram in
each main axis. The sampled classes overlap entirely onto
the x-axis. This is expected as no burn scars exist in the
prefire acquisition. However, the samples overlap partially
on the y-axis. It is this mixture of spectral information
in the postfire acquisition that decreases the separability
between the samples in question.

The first step of PCA is to mean-center the input data.
While the shape of the scatter remains intact after cen-
tering, the coordinate system is shifted to its center. EVD
is then applied on the covariance matrix of the mean-
centered input data. The transformed data are projected
on two new axes. The first principal component (axis
rotated by 49.6 degrees, labeled PC1) captures the greatest
possible spread of the point cloud. This is the maximum
variance of the initial bi-variate data set. The 2nd prin-
cipal component (axis rotated by 139.6 degrees, labeled
PC2) receives a lower amount of data, which corresponds
to the second possible maximum variance of the input
data.

Likewise as with the input, all transformed observa-
tions are represented graphically in offset histograms,
yet parallel to the new dimensions. In the firs princi-
pal component (PC1), the mini-histogram of the burned
area samples overlaps partially with the mini-histogram of



Alexandris et al. Open Geospatial Data, Software and Standards

Table 1 Four variants of PCA based on SVD

(2017) 2:17

Transformations
prior decomposition

Non-scaling Scaling

Non-centering uncentered, unscaled (A)  uncentered, scaled (B)

Centering centered, unscaled (C) centered, scaled (D)

the vegetation samples. In addition, both mini-histograms
are “inside” the main zone of the overall histogram. We
observe the similarity of histograms in PC1 with those
in the x-axis of the input data. In the second principal
component (PC2), however, a higher degree of separa-
tion between the sampled classes is obvious. The burned
area samples appear as being outside of the main zone
of the larger (grey coloured) histogram. In effect, the his-
tograms in PC2 appear similar to those in the y-axis of the
input data. Nevertheless, the mini-histograms appear to
be slightly more concentrated.

Figure 2 visualises the EVD-based PCA performed
on the correlation matrix of the input data. Essen-
tially this means that the input data has been scaled
in addition to mean-centering. Comparing to Fig. 1,
the centered but unscaled version, a series of important
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observations reveal in support to the outlined theoret-
ical concepts. First, the shape of the scatter is altered
(more widespread). This is numerically confirmed by
the modified range of values [ —2,2] versus [ —0.5,0.5].
Second, the mini-histograms of the sampled classes are
flatten.

Four ways to extract principal components via SVD

Within the framework of PCA, we question the effects
of centering and scaling in burned area clusters. We
build data composites based on the following versions
of the original data matrix (overviewed in Table 1):
(A) uncentered-unscaled, (B) uncentered-scaled, (C)
centered-unscaled, (D) centered-scaled. Next, we subject
these to the application of SVD-based PCA, aiming to
identify improved spectral enhancements of burned area
clusters.

Using pre- and post-fire MoDIS bands 2, we visualise
the application of the four SVD-based PCA versions in
Figs. 3, 4, 5 and 6. Their interpretation may follow a path
similar as in the previous subsection. Noteworthy is the
identicality of Figs. 1 and 2 to Figs. 4 and 6 respectively.
This is a mere verification that a centered SVD equals the
conventional EVD-based PCA.

Principal components
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Fig. 3 Non-centered and non-scaled SVD-based PCA on a bi-variate data set composed by a post- and a pre-fire MODIS surface reflectance band 2.
Black dots and grey asterisks are respectively samples of burned surfaces and vegetation. The point-scatter has been rotated after PCA to the
direction in which the spread of the data onto the new axes (dashed axes, PC1 and PC2) is maximised. These are restricted to be orthogonal. The 1st
component reflects mainly the mean of the original data
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posed by a post- and a pre-fire MODIS surface reflectance band 2. Black

dots and grey asterisks are respectively samples of burned surfaces and vegetation. The original coordinate system (light greyed) has been shifted
after centering. The point-scatter has been rotated after PCA to the direction in which the spread of the data onto the new axes (dashed axes, PC1
and PC2) is maximised. These are restricted to be orthogonal. The 1st component reflects mainly the mean of the original data

Most interesting, however, is the non-centered and
unscaled SVD case (A) visualised in figure Fig. 3 on
page 19. It is unscaled and therefore the input data’s
range remains unaltered. Non-centering does not shift
the origin of the input scatter plot. Careful observa-
tion hints to more concentrated mini-histograms when
comparing them to their equivalents in the rest of the
versions.

Implications of pre-processing data prior to PCA
Effects of mean-centering
While both PCA and SVD have been widely used in
applied scientific research, most studies do not detail why
centering is (within the framework of PCA) or should be
(within the framework of SVD) performed at all. Few stud-
ies in applied disciplines, most of them dating back some
decades ago, touch upon this question in-depth ([8, 39—
44] or even debate it [45—48] when compared to numerous
applications that employ PCA without detailing its math-
ematical background. In addition, the existence of a recent
statistical study shedding light on the issue [6], indicates
that the question itself is infamous.

The fact that centering is treated as an integral part
of PCA could be a reason why many studies have not

experimented with the differences and effects of apply-
ing the general steps of PCA on the raw data matrix. The
contrast between a centered and an uncentered PCA lies
in the projection (or spread) of the data on to the princi-
pal axes. In a centered PCA the spread is proportional to
the variance of the data’s coordinates, while in an uncen-
tered PCA it is simply the sum of the squared distances
of the points from the unshifted origin (non-central sec-
ond moments). Cadima and Jolliffe [6] explain that in an
uncentred PCA it is variability about the origin, rather
than about the centre of gravity of the n-point scatter in R?,
that will be of concern.

Non-centering can, and probably will, break the premise
of discorrelation between the extracted components.
Rather, the first component will reflect the mean instead
of the greatest variance [8]. That is, in case the same set of
axes are relevant to the explanation of the variability of all
clusters (high within-axes heterogeneity), non-centered
PCA results in a single generic component [43].

Nonetheless, cases exist where non-centered PCA dis-
tinguishes disjunctions more efficiently by intercepting
clusters in decreasing order of importance due to size and
homogeneity [8, 30, 41, 42]. According to [41], the influ-
ence of variance within a cluster on another cluster can
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Fig. 5 Non-centered yet scaled SVD-based PCA on a bi-variate data set composed by a post- and a pre-fire MODIS surface reflectance band 2. Black
dots and grey asterisks are respectively samples of burned surfaces and vegetation. The shape of the point-scatter has altered (so did the range of

values) after scaling and rotated after PCA to the direction in which the spread of the data onto the new axes (dashed axes, PC1 and PC2) is
maximised. These are restricted to be orthogonal. The 1st component reflects mainly the mean of the original data

be minimised by not subtracting the mean. Whenever the
data form distinct clusters (i.e. clusters have zero, or very
small, projections on some subset of the original axes —
that is high between-axes heterogeneity), the variability
associated with each cluster, is mainly explained by cer-
tain axes only. The first few uncentered principal axes
pass through (or close to) one of the different clusters,
thus allowing a clearer and simpler picture of the data
structure.

Effects of scaling

The effects of scaling remotely sensed data, prior to PCA,
in terms of subsequent classification accuracy, have been
investigated by many including [23, 49-51]. Most of these
studies conclude that scaling is useful in preventing cer-
tain features from dominating the analysis due to their
large numerical values [52, 53]. Even recent applications
report greater efficacy by using data scaled to unit vari-
ance [31, 54].

Nevertheless, [55] noted that in the case of using bands
with the same physical units, the derivation of the (princi-
pal) components from a non-standardised matrix can be
justified. The justification relies on the assumption that

the information contained within each band is a func-
tion of the precision with which the spectral data are
sensed. In order to exemplify this, [56] justify the use of
the variance-covariance matrix, which weights each band
according to its relative variance and therefore produces
components which are more easy to interpret. Likewise,
[57] confirm that standardization produces less noisy
high order components and decreases omission errors
in the subsequent fire scar classification, but at the cost
of increased commission errors. Due to their preference
for a conservative fire scar mapping (fewer commission
errors), they deliberately use the unstandardised PCA
which they find to perform excellent in extracting fire
scars.

Linking non-centered SVD to remote sensing of burned
areas

The structure of a multi-spectral data set may be statis-
tically retouched, without destroying existing clusters, in
numerous ways. Factually, some operations alter the dis-
tances between clusters. These may increase or decrease
the spectral distances between various land cover classes.
Others preserve the existing distances and modify the way
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that principal axes intercept existing clusters. The latter is
the case for the conventional form of EVD-based PCA. It
involvesdata centering and, optionally, scaling. Thus the
data are subject to the implications already discussed.

SVD is a numerically more robust alternative solu-
tion to PCA. Hence, it is preferrable for high dimen-
sional data sets. Contrary to EVD, centering the raw data
matrix in SVD is optional. In case of distinct clusters in
high-dimensional data (high between-axes heterogeneity),
avoiding centering, minimises the influence of a cluster’s
variance on another cluster. In addition, the first prin-
cipal component captures mainly the mean of the input
data. This is advantageous since burned area samples
are, expectedly, below the mean. In support, uncentered
principal axes, pass close to one of the different clus-
ters. Consequently, existing data clusters, may be detected
more clearly by a non-centered SVD.

In this context, it is worth experimenting to avoid scal-
ing the data. Subtle yet important variations between
clusters may be preserved in the derived compoments.
Such is the case of burned surfaces. They are indexed by
lower values due to higher absorption of solar energy in

comparison to other surfaces, especially for a few weeks
after the pause of the fires. Because there is little devi-
ation among responses corresponding to the same land
category, distinct clusters of data are formed. Burned area
clusters feature low internal heterogeneity and are, thus,
easier to distinguish in some spectral bands. This is even
more pronounced in bi-temporal data sets (composed by
pre- and post-fire observations) where the between-axes
heterogeneity is even higher.

The theoretical concepts presented in this article are
demonstrated numerically via a Multiple Response Pro-
cedure [58] and supported by separability metrics in a
second article titled Remote sensing of burned areas via
PCA, Part 2: SVD-based PCA using MODIS and Landsat
data [59].

Conclusions

PCA can enhance the spectral separability of burned
surfaces among other land cover features. Burned area
clusters present low internal heterogeneity and form dis-
tinct clusters. In addition, they are easier to detect in
some dimensions of a multi-spectral data set. Further
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they are absent in some dimensions (i.e. pre-fire data) in
multi-temporal composite data set. Therefore, they fit the
purpose of a non-centered SVD-based PCA.

Nevertheless, due to the natural redundancy of remotely
sensed multi-spectral data, and both EVD and SVD being
agnostic about data clusters, it may be complex to inter-
pret the effects of centering and scaling the input data
prior to PCA. Thorough examination is necessary to iden-
tify optimal data pre-processing options.

Endnotes

! Also referred as conversion to z-scores, z-values, stan-
dard scores, normal scores, standardised variables.

2MOD09GQ.A2007242.h19v05.005.2007244231200.

3 MOD09GQK.A2006239.h19v05.004.2006241155630.

4These data are distributed by the Land Processes Dis-
tributed Active Archive Center (LP DAAC), located at the
U.S. Geological Survey (USGS) Earth Resources Observa-
tion and Science (EROS) Center (Ipdaac.usgs.gov).

>https://lpdaac.usgs.gov/dataset_discovery/modis/
modis_products_table/mod09gq. (Accessed 27 May 2017)

®For MODO09 products visit: http://landweb.nascom.
nasa.gov/cgi-bin/QA_WW W /newPage.cgi?fileName=
mod09_12&subdir=v2specs. (Accessed 27 May 2017)

"For Collection4 MODIS products read more at:
http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/
detaillnfo.cgi?prod_id=MOD09GQK&ver=C4. (Accessed
27 May 2017)

8For Collection5 MODIS products read more at:
http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/
detaillnfo.cgi?prod_id=MOD09GQ&ver=C5.
27 May 2017)

°For Known issues in MODO09 products (surface

(Accessed

reflectance):  https://landweb.nascom.nasa.gov/cgibin/
QA_WWW/getSummary.cgi?esdt=MODO09type=C5.
(Accessed 27 May 2017)
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