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Abstract

The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted
Aircraft System (RPAS), is leading to a growing demand for new image processing and classification tools. This
article presents a comparison of the Random Forest (RF) and Support Vector Machine (SVM) machine-learning
algorithms for extracting land-use classes in RPAS-derived orthomosaic using open source R packages.
The camera used in this work captures the reflectance of the Red, Blue, Green and Near Infrared channels of a
target. The full dataset is therefore a 4-channel raster image. The classification performance of the two methods is
tested at varying sizes of training sets. The SVM and RF are evaluated using Kappa index, classification accuracy
and classification error as accuracy metrics. The training sets are randomly obtained as subset of 2 to 20% of the
total number of raster cells, with stratified sampling according to the land-use classes. Ten runs are done for each
training set to calculate the variance in results. The control dataset consists of an independent classification
obtained by photointerpretation. The validation is carried out(i) using the K-Fold cross validation, (ii) using the
pixels from the validation test set, and (iii) using the pixels from the full test set.
Validation with K-fold and with the validation dataset show SVM give better results, but RF prove to be more
performing when training size is larger. Classification error and classification accuracy follow the trend of Kappa index.
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Background
The increase in the number of remote sensing plat-
forms, ranging from satellites to close-range Remotely
Piloted Aircraft System (RPAS), is causing a growing
demand for new tools for image processing and classifi-
cation. Classification is applied in many research fields
such as geomorphology, environmental analyses, land
use, fragmentation of habitats and risk assessment [1, 2]
just to name a few. In particular RPAS are applied to fields
that benefit from close-range sensing, such as 3D model-
ling of cultural heritage and archaeology, environmental
sciences, precision forestry and precision agriculture
[3–7]. Imagery collected from remote sensing platforms
is commonly classified using conventional remote sens-
ing techniques supplied by available software in the
market. In remote sensing literature, there are two
main classification approaches, pixel-based and object-

based. The pixel-based methods can be divided into un-
supervised and supervised. The unsupervised classifiers
cluster pixels in a number of classes based on statistical
information from the image. The process is automatic
and the user can only set the number of clusters. The
supervised classifiers are based on training areas
inserted by an operator, which define a spectral signa-
ture for each class. The object-based classifiers defined
an object using geometric information, contextual in-
formation and texture information.
Machine learning techniques are classification/regression

methods for analysing data. They can be used for su-
pervised and unsupervised classification. They use algo-
rithms that learn from previous computation, and they
were recently applied in investigations regarding cotton
crop [8], variable-rate fertilization [9], classification of
invasive weed species [10], detecting landing sites [11, 12],
geological mapping [13], Land Use/Land Cover (LULC)
classification [14–18].* Correspondence: marco.piragnolo@phd.unipd.it
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Recent developments in technology have pushed for a
fast increase in using RPAS – commonly referred to as
“drones” for observation of the earth surface. The chal-
lenge of processing imagery obtained from RPAS re-
sides in the increase of the size of datasets, which is
due to increasing resolution of images and the ability of
RPASs to collect hundreds of images in each flight. A
novel approach using machine learning might provide
faster and more accurate results than typical supervised
classification of such images. The goal of this work is to
benchmark the performance of two machine learning
algorithms for classifying an RPAS-derived orthomosaic
using open source R packages. The algorithms are Ran-
dom Forest (RF) and Support Vector Machine (SVM).
They are evaluated using three accuracy metrics, Kappa
index, classification accuracy and classification error.

Material and methods
The RPAS images have been acquired in a testing area
inside the Campus of Agripolis at University of Padova
in the city of Legnaro (Italy). The size of the area is
241 m × 508 m. It contains heterogeneous land-cover,
including bare ground, vegetation and urban features.
The ground-truth is defined by direct observation.
Eighteen ground control points (GCP) were defined in
the area for orientation of the photogrammetric image
block. The coordinates were collected with GNSS in
Real Time Kinematic mode; the root mean square error
(RMSE) of measures resulted between 0.008 and 0.011.
The RPAS flight was performed in November 2015

using a camera with Red, Blue, Green and Near Infrared
camera (RGBI) carried by the SenseFly EBee fixed wing
platform. The average ground sampling distance (GSD)
was 4.5 cm on the ground at a flight altitude of 150 m.
The images have been processed using Agisoft Photoscan.
The result is an ortho-rectified mosaic of images, with an
RMSE of 0.393 pixel. The final GSD, or spatial resolution,

is 6 cm, so the final dimensions are 4020 X 8466 pixels,
and the storage size is 48.9 MB. To reduce the computa-
tion time, the full dataset was resampled using the nearest
neighbour algorithm to a cell size of 30 cm. The nearest
neighbour algorithm preserves the radiometric values of
cells. Then, the orthomosaic is clipped to a final dimen-
sion of 801 × 529 pixels, storage size of 1.21 MB (Fig 1).
The RF and SVM machine learning methods were tested
on the clipped image, using the R/rminer package [19]
available in The Comprehensive R Archive Network
repository [20].
The R/rminer package, version 1.4.1 for R is an aggre-

gator of 14 classification and 15 regression methods. It
also includes methods for determining common accur-
acy metrics over results [21, 22]. Two algorithms, Sup-
port Vector Machine (SVM) and Random Forest (RF)
have been compared in this study. The SVM uses a sep-
arating hyperplane as a predictor. A decision plane di-
vides dataset into two groups. Hence, the set of objects
has different class memberships, and data are trans-
formed in classes by using a mathematical function
called kernel [23]. The RF classifier consists of a collec-
tion of trees. It samples randomly the original dataset,
and defines decision trees using bootstrap aggregating.
Bootstrap is a statistical technique that allows approxi-
mating statistics (e.g. average, variance, confidence
interval) of data from the data itself. It is used when the
distribution of the original dataset is not known before-
hand. A complete tree with all branches is grown for
each sample, and the predictors are applied to each
branch [24]. Finally, the best variable obtained from the
predictor is chosen, and predictions are aggregated in a
new sample. Consequently, a new sample is predicted,
and the estimation of errors can be calculated at the
level of iteration and aggregation [25, 26]. In this study,
RF and SVM have been trained using a subset of 2 to
20% of the total number of raster cells. For each

Fig. 1 Clipped testing area: true colour image (left), false colour infrared image (right)
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percentage, ten training sets were extracted using strati-
fied random sampling. This allowed to assess the variance
from accuracy results for each size of training set. The
control dataset is an independent classification based on
photo interpretation as shown in Fig. 2. The classes for
LULC are: (i) broadleaf, (ii) building, (iii) grass, (iv) head-
land access path, (v) road, (vi) sowed land, (vii) vegetable.
The framework of the benchmarking process is illus-

trated in Fig. 3. Each class in the area is represented differ-
ently in terms of number of pixels (i.e. area). Therefore,
the number of pixels we sampled for training was propor-
tional to the class area (i.e. stratified sampling). Pixels fall-
ing across two polygons, thus mixing two different classes,
were discarded to limit using pixels with mixed spectral
signature. For each set of stratified samples, ten different
training sets and ten validation sets have been created.
The training set is used to fit the model and to apply it for
classification of the image. The validation dataset is the
difference between the full set and the training set.
The framework trains and tests each of the two methods

(RF and SVM) fitting the model and applying K-fold
cross-validation. The K-fold cross-validation technique
splits the data in K (10) sets (folds) of equal size. K − 1
subsamples are used as training test set, and a single sub-
sample is used for validation. The procedure is repeated K
times, but each subset is used only once for the validation.
The accuracy metrics used for comparing results are

the Kappa index, the classification accuracy and the clas-
sification error. Their values range from 0 to 100, and
they are estimated with three different approaches, (i)
using pixels from the training test set and applying K-
Fold cross validation, (ii) using pixels from the validation
test set, and (iii) using pixels from the full test set.

Fig. 2 Land use/Land cover of testing area

Fig. 3 The schema of the framework for benchmarking. Models (RF
and SVM) have been applied to stratified samples ranging from 2
to 20% of the total population (n. of pixels). For each set of stratified
samples, ten different training sets and ten validation sets have
been extracted
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Results and discussion
The accuracy metrics are reported in three boxplots
(Figs. 4, 5, 6) which represent respectively the Kappa
index (K), the classification accuracy rate (Acc) and the
classification error rate (CE). The last two are the in-
verse of each other. All metrics range from 0 to 100.
The boxplots show the variance calculated from the ten
runs for each training size.
Figure 4 reports Kappa index calculated for K-fold test

set, validation test set and full test sets. Comparing the
boxplots of the three validation methods, it is clear how
their values grow proportionally with the training subset
size from 2% to 20%. The variance decreases with the

increase of the training subset size. In the K-fold cross
validation test set, the results range from 80 to 84, and
the SVM performs better than RF. Using the validation
test set, the results are similar, but values are, as ex-
pected, lower, ranging from 48 to 49.5. In addition, in
this case the SVM is better in comparison with RF.
When validating against the full test set, the RF returns
a better result than SVM when training with more than
10% of the full test set. The Kappa values range from 48
to 51. RF rises gradually from 48.5 to 50.5, whereas the
SVM remains stable around 49.5.
Figure 5 shows the classification accuracy for K-fold

test set, validation test set and full test sets. Likewise, the

Fig. 4 Boxplot of Kappa index (percentage value) calculated for K-fold cross-validation, full test set and validation dataset ranging from 2 to 20%
of the total population (n. of pixels)
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accuracy trend is similar the K index trend, and a grad-
ual improvement in accuracy is related to an increasing
training percentage. Indeed, using K-fold cross validation
test set, the SVM gets a better result than RF. In this
case, the score is over 88 whereas using a validation test
the score ranges from 56 to 58. Using a full test set, the
RF has better results than SVM, and the score ranges
from 56 to 58. The RF rises gradually from 56 to 58,
whereas SVM remains stable between 57 and 57.5.
Figure 6 illustrates a decreasing trend for classification

error in the three dataset. In the K-fold cross validation
test set, the SVM has less error that RF with variations
of 0.5. Likewise, the validation test set has a decreasing
trend, and the score ranges between 42 and 44. Using

the full test set, errors range from 42 to 43.5, but the RF
and SVM have a similar score using less than 5% of the
pixels as training. Using a set for training of more than
5% of the total pixels, the RF and SVM results have
some differences. The RF has a decreasing trend, and it
reaches the minimum around 42, whereas SVM remains
steady at 42.7.
Results by no means intend to prove one classifier better

than another. Classifiers behave differently depending on
several factors, and results prove exactly this point. Figure
4 is the most informative, where the first two validation
methods show a better performance by SVM, but valid-
ation against the full test set provides a different result.
The comparison of results from three different validation

Fig. 5 Boxplot of Classification accuracy (percentage value) calculated for K-fold cross-validation, full test set and validation dataset ranging from
2 to 20% of the total population (n. of pixels)
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methods provides added insights on the behaviour that
operators can expect from the two classifiers. Also, an-
other informative aspect from the plots is the added value
from using larger training sets. This is an important as-
pect, as bigger training sets require more computing time,
and relative expenditure in terms of energy. Knowing the
range of improvement over a growing training size can
support decision in future classification procedures.
Another source for discussion is the definition of

classes and their identification over the image. This, of
course, has a certain degree of subjectivity depending
on the operator who manually defines these areas with
polygons. Also, the inevitable aspect of inter-class and
intra-class spectral mixtures has to be accounted for.

Border pixels were removed in this study to limit mix-
ing, but this operation does not remove the problem
completely. Nevertheless, the results show significant
relative differences correlated to the size of training
sets. This is something to consider as supportive infor-
mation when using such methods.

Conclusions
This paper compared accuracy metrics of two machine
learning algorithms, SVM and RF, using three validation
methods and testing different sizes of training sets. As
expected, accuracy was better when a bigger training
size is used, but this trend is not linear. This is particu-
larly evident when the validation is done against the full

Fig. 6 Boxplot of Classification Error (percentage value) calculated for K-fold cross-validation (percentage value), full test set and validation dataset
ranging from 2 to 20% of the total population (n. of pixels)
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test set. SVM gets better results with smaller training
sets, whereas RF becomes better at training sizes larger
than 7–8% of the total. Validation with K-fold and with
the validation dataset showed SVM give better results,
but RF proved to be more performing when training size
is larger. Classification error and classification accuracy
followed the trend of Kappa index.
Future investigations will limit mixing by careful selec-

tion of single pixels for both training and validation.
This will decrease the size of the sets, but will increase
the purity of pixel class and provide better insight on the
behaviour of the machine learning methods. Available
multi-spectral imagery benchmarking datasets will be
considered also for further testing, for example the
MUULF Gulfport dataset [27]. The focus of future stud-
ies will test more machine learning methods including
multiple runs with different combinations of training
and test sets, to improve on results from this study and
from [16].
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