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Construction of smooth daily remote
sensing time series data: a higher
spatiotemporal resolution perspective
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Abstract

Research in time-series remote sensing data is receiving increasing attention. With the availability of relatively
short repeat cycle and high spatial resolution satellite data, the construction and application of high spatiotemporal
remote sensing time-series data is promising. In this paper, we proposed a method to construct complete spatial
time series data, with Savitzky-Golay filter for smoothing and locally-adaptive linear interpolation for generating
daily NDVI imagery. An IDL-based program was developed to achieve this goal. The China’s HJ-1 A/B satellite data
were employed for this remote sensing time series construction. The results demonstrated that: (1) This method
can generate smooth continuous time series image data successfully based on irregularly short-revisit remote
sensing data; (2) HJ-1 A/B NDVI time-series were demonstrated to be successful in monitoring crop phenology
and hyperspectral analysis was successfully applied on HJ-1 A/B time-series data to perform temporal endmember
extraction. The IDL-based time-series construction program is generalizable for various kind of multi-temporal
remote sensing data such as MODIS vegetation-index product. Discussion and concluding remarks are made to
reveal the authors’ perspective on higher spatial resolution time-series analysis in the remote sensing community.
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Introduction
With the launch of high frequent remote sensing satel-
lites and availability of data, time-series data derived
from multi-temporal remote sensing images are receiv-
ing significant attention concerning the dynamics of
regional vegetation growth, phenological crop identifica-
tion, land use change detection, etc. [1–4]. Specifically,
vegetation indices (VI) products as time-series data have
been widely employed in the remote sensing community.
These data help us to understand the earth system and
land-surface dynamics [4, 5]. However, most of VI time-
series data was derived from low spatial resolution satel-
lite platforms such as NOAA-AVHRR (Advanced Very
High-Resolution Radiometer) instruments; EOS-MODIS
(Moderate Resolution Imaging Spectro radiometer); and
SPOT (Système Pour l’Observation de la Terre) VGT

product [6–10]. Higher spatiotemporal resolution images
can deepen the understanding of land surface dynamics;
generating consistent and comparative finer spatiotem-
poral time series imagery is therefore critical [11].
Several researchers have started to develop methods to

increase the spatial resolutions to solve the trade-off be-
tween temporal and spatial resolution [12–15]. The term
“data fusion” has been proposed to take advantage of
scale and repeat cycle, examples just as the use of one
scene of Landsat TM imagery to predict another time
based on its relationship with high frequent MODIS im-
agery [16]. However, the performance of data fusion de-
pends heavily on the sensitivity to both spatial
heterogeneity and spectral inconsistency, which meant
not all area are applicable [17]. Data fusion still rely on
the availability of actual satellite images, and the quality
of ingested remote sensing data. Even though it can be
used to make synthetic images from multiple sources,
these fused images cannot replace actual images [16].
With advancing technology for launching satellite

constellations, multiple remote sensing satellites can be
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brought into orbit at low cost; with both radiometric
and spatial consistency, these satellites bring new per-
spectives for earth observation [4, 15, 18, 19]. One suc-
cessful mission is Planet Labs’ Remote Sensing Satellite
System [20]. These small satellites provide high frequent
revisiting cycle, which meets the requirement of daily
observation.
Differed to idea of multi-source data fusion, the per-

spective of enhancing spatiotemporal resolution may be
addressed by newly launched remote sensing satellites
with real high spatial and temporal resolution data [15].
On the other hand, previous work done by Pan et al.,
they employ mono-source remote sensing data, a two-
day-repeat HJ-1 A/B data, and developed daily time
series construction method [3]. Similarly, Sun et al. rede-
veloped the TIMESAT program by modifying the adap-
tive smoothing and together with daily interpolation,
that was aiming to generate daily 30 m Landsat time
series [21].
Remote sensing time series data are commonly used in

phenology monitoring. To facilitate the processing and
analysis of time series, relevant researchers might have
encountered with two computer programs: TIMESAT or
SPIRITS [3, 18, 21–23]. Conventionally, MODIS data
has been widely implemented in monitoring vegetation
dynamics based on these two programs. However, these
programs were designed to handle MODIS or SPOT-
VGT VI products that were organized at a fixed-day
interval (e.g., 8 or 10 days composite). To date, higher
resolution remote sensing satellites (e.g., Sentinel, Rapi-
dEye, Planet Labs) have become operational. However,
few relevant studies were founded had adopted these
short repeat-cycle and high spatial resolution data for
time series analysis as the same way with MODIS. To
construct a high spatiotemporal time series using these
remote sensing data and make it applicable for TIME-
SAT or SPIRITS, specifically in phenology detection, one

major problem is ensuring the continuousness and com-
pleteness of the time series dataset [3].
As such, up-to-date remote sensing satellite constella-

tions provide sufficient images, which leads to the po-
tential of constructing high spatiotemporal resolution
time-series data. The motivation of writing this paper
was to address an important topic by description of
methodology together with a computer program that
meets the common interest of facilitating time-series re-
mote sensing data, specifically for up-to-date high spatial
resolution satellite data.

Data preparation
China’s HJ-1 A/B satellites data were employed for test-
ing in this paper. Launched in 2008, HJ-1 A/B constella-
tions are a new generation of small Chinese civilian
remote sensing satellites [24]. The HJ-1 A/B satellites
have two optical sensors to perform earth observation at
30-m resolution, with four bands covering the visible
and near-infrared wavelength range. The double constel-
lations constitute an observation network that covers
China and its surrounding areas with a two-day repeat
cycle. By taking advantage of its relatively high spatial
resolution and frequent repeat cycle, some researchers
demonstrated its potential in constructing dense time-
series data by data fusion with MODIS [11, 15].
The main task of this study is to make use of HJ-1

A/B for NDVI (normalized difference vegetation
index) time-series data construction. Since the two-
day-repeat HJ-1 A/B satellites provide a considerable
amount of images for time-series construction in our
test site, we downloaded year-round HJ-1 A/B CCD
images in 2012 for testing. There were 73 scenes avail-
able in 2012, and the images were cloud-free in the re-
search area (Fig. 1 (a)). The site selected for testing
HJ-1 A/B satellite data was Yangling, located in
Guanzhong Plain of Shaanxi Province, China. This

Fig. 1 Data preparation: (a) acquisition of HJ-1 A/B CCD images; (b) collection of subset images in the test site and coregistration; (c) calculation
of NDVI and construction of the time-series dataset
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area has a double cropping system: the winter wheat is
sowed in October and harvested in June; the summer
corn is sowed in June and harvested in October.
Production of these HJ-1 A/B NDVI are conventional
as others remote sensing imagery, and the literature
has summarized the procedure [3, 11, 15]. The NDVI
images were layer stacked to construct a time-series
dataset (Fig. 1 (b) and (c)).

Methodology
Satellite images captured by optical remote sensors usu-
ally contain noise due to weather conditions and chan-
ging solar illumination throughout the year [25, 26].
When performing time-series smoothing, researchers
are also reminded that maintenance of the original char-
acteristics of the time-series profile is critical [25]. Just
as with other high spatial resolution images, the trade-
off is that HJ-1 A/B time-series data is spaced irregularly
in time. Signal processing techniques (e.g., wavelet and
Fourier analysis) require the time-series data have regu-
lar, equidistant spacing [27, 28], hence they may not
work well in the nonequidistantly spaced time-series
data derived from HJ-1 A/B satellites.
Moreover, remote sensing VI products such as MODIS

and SPOT-VGT are organized in fixed-day intervals
(e.g., 8 or 10 days composite). The processing methods
available in time-series software (e.g., TIMESAT) do not
function for unevenly distributed time-series; on the
other hand, the function fitting or Fourier-based filters
may be problematic when applied to irregular VI time-
series [29]. Therefore, in this section, we improved our
method by first introduced the Savitzky-Golay (S-G)
smoothing method. Then other smoothing methods
were tested for comparison to prove its superiority.
Finally, a missing-data interpolation was proposed to
ensure regular spacing on a daily basis and generate
daily NDVI images. IDL (Interactive Data Language)
programming helps to achieve these goals.

S-G smoothing method
Time-series smoothing must be done to retrieve the es-
sential shape of a curve. In this paper, the Savitzky-Golay
(S-G) smoothing method was employed to facilitate the ir-
regular spacing in HJ-1 A/B NDVI time-series. The S-G
filter, also known as the least squares or digital smoothing
polynomial, can be used to smooth a noisy signal [30].
The algorithm description can be described as below:

gi ¼
XnR

n¼−nL

cnf iþn=n ð1Þ

where fi represents the original data value in the time-
series, and gi is the smoothed value, which is the linear
combination of cn and fi. Here, n is the width of the
moving window to perform filtering, and nL and nR cor-
respond to the left and right edge of the signal compo-
nent. If cn is a constant defined as cn = 1/(nL + nR + 1),
then the S-G filtering becomes a moving average
smoothing. The idea of S-G filtering is to find filtering
coefficients cn that preserve higher moments. Therefore,
in Eq.(2), cn is not a constant but a polynomial fitting
function, typically quadratic or quartic. Then a least-
squares fit is solved, ranging from nL to nR to obtain cn.
For a specific dataset of a time series in a moving
window, we define the fitting function as a quadratic
polynomial for fitting a specific range of fi:

cn tð Þ ¼ c1 þ c2t þ c3t
2 ð2Þ

where t corresponds to the day of the year in NDVI time
series. Therefore, the smoothed value gi can be obtained
via Eq.(1). The result of S-G smoothing methods is
shown in Fig. 2.

Comparison between S-G and other methods
Several commonly used methods for smoothing were
tested as follows. The results could firmly demonstrate
the S-G filter’s superiority.

Fig. 2 Smoothing time-series data by S-G method
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(1)Global function fitting

The SPLINE-curve fitting is a global function fitting
to smooth discrete data. By forming a polynomial equa-
tion, a smoothed function curve is obtained to repre-
sent the discrete data. Likewise, other function fitting
methods, such as using the asymmetric Gaussian
model, have been adopted for fitting AVHRR-NDVI
time-series data [1]. In this study, we applied a

SPLINE-curve fitting, y ¼ ax3 þ bx2 þ cxþ d , and a

Gaussian function fitting, y ¼ a�e − x−bð Þ2
c

� �
, on HJ-1 A/B

time series data for smoothing (Fig. 3). Figure 3 (a)
appears to fit well but does not maintain the essential shape
of the time-series trajectory; in Fig. 3 (b), the Gaussian
function did not perform well in fitting a double cropping
area which had two growth cycles over time. Apparently, as

demonstrated, global function fitting methods are not suit-
able for unevenly spaced time-series data.

(2)Signal denoising

Viewing time series data as a signal, fast Fourier transform-
ation (FFT) and a wavelet transform (WT) were adopted to
handle the HJ-1 A/B time-series data. FFT and WT have
already been applied on MODIS VI time series to retrieve a
smoothed trajectory vegetation growth cycle [8]. We pro-
grammed the IDL-based fast Fourier transformation and the
wavelet transform function to apply to HJ-1 A/B time series
data. However, as mentioned before, signal denoising (for
FFT and WT) did not perform well for unevenly spaced
time-series data (Fig. 4); no matter how the denoising param-
eters were set, such methods neither maintained an original
shape nor preserved the original date in the time series.

Fig. 3 Smoothing time-series data by function fitting with (a) a polynomial function and (b) a Gauss function

Fig. 4 Smoothing time-series data by signal denoising: (a) wavelet transform; (b) Fourier transform
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(3)HANTS method

HANTS (Harmonic Analysis of NDVI Time-Series) is
a commonly used tool to smooth time-series remote
sensing data (http://www.un-spider.org/links-andresour
ces/gis-rs-software/hants%C2%A0harmonic%C2%A0ana-
lysis-of%C2%A0time%C2%A0series-nlrgdsc). HANTS can
be used to remove cloud effects, smooth the data set,
interpolate the missing data, and compress the data. Al-
though the HANTS method could generate a pleasing
looking time series, it has the same problem as FFT and
WT when using the signal denoising method. For un-
evenly spaced HJ-1 A/B time-series data, HANTS
tended to maintain the spatial completeness of a pixel
profile (just as cloud removal), but to scarify the tem-
poral characteristics. Moreover, the HANTS method did
not preserve the original date in the time series; tem-
poral characteristics revealing critical phenology details
were drowned (Fig. 5).

Generating daily NDVI images
S-G filtering was employed to smooth HJ-1 A/B NDVI
time-series data, to ensure a continuous and complete
time-series dataset. A feasible approach was then pro-
posed to ensure regular spacing on a daily basis. Linear
interpolation is a simple interpolation method com-
monly used in mathematics and computer science. This
paper developed a locally adaptive linear interpolation to
generate missing data throughout the NDVI time series.

Missing data between two images can be generated by
Eq.(3)–(4):

NDVI−NDVI0
DOY−DOY 0

¼ NDVI1−NDVI0
DOY 1−DOY 0

ð3Þ

NDVI ¼ NDVI0 þ NDVI1−NDVI0ð Þ� DOY−DOY 0

DOY 1−DOY 0

ð4Þ
where NDVI represents the missing day to be interpo-
lated, and NDVI1 and NDVI0 represent the valid images
used for the interpolation. Therefore, the NDVI between
NDVI0 and NDVI1 can be treated as a linear relationship
and then generated according to Eq. (4).
The smoothing performance and interpolation accur-

acy were evaluated by 1:1-line comparison as described
in Fig. 6, both presented a goodness of fit.

Code design
Most commonly-used remote sensing software (e.g.,
ERDAS, ENVI) does not provide functionalities to manipu-
late time-series data; at present, TIMESAT and SPIRITS are
also not designed to facilitate such relatively high spatial
time series data. Additionally, an executable processing
framework has not been found that allows researchers to
obtain high spatiotemporal time-series dataset that meets
their research demands. Although the methodology de-
scribed above was easily achieved in operating a one-
dimensional array by most programming platforms, the

Fig. 5 Smoothing time-series data by HANTS method
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question raised here was how to perform smoothing and
interpolation for time-series data with a three-dimensional
array. IDL is an array-oriented language with numerous
mathematical analysis and graphical display techniques, is
ideal programming language for image data analysis,
visualization, and cross-platform application development
(http://www.harrisgeospatial.com/ProductsandTechnology/
Software/ENVI.aspx). Anyone who working with imagery or
raster data has probably encountered ENVI software; its li-
brary routines are IDL-based functions and procedures. IDL
programming is based on the ENVI function that is capable
of operating remote sensing images; thus we developed a
program to achieve filtering and interpolation of three-
dimension time-series data.
As introduced in S-G smoothing method section and

Generating daily NDVI images section, this program
mainly consists of two steps: time series filtering and image
interpolation. This IDL-based program was developed with
the IDL functions library, using Savitzky-Golay filtering

and interpolation. The coding of this program was de-
signed to treat time-series datasets as a three-dimension
array by calling ENVI functions to manipulate individual
images; the program loops pixel by pixel to extract the
time-dimension to perform filtering and interpolation.
As described in section S-G smoothing method, the S-G

filter will tend to minimize overall noise in NDVI time-
series to preserve the original trajectory. This IDL program
requires users define the width of the moving window and
degree of polynomial fitting in S-G filtering. The
interpolation in the IDL program includes three commonly
used methods: (1) simple linear interpolation, as described
in Eq. (3)–(4); (2) least squares quadratic fit for each four-
point neighborhood (x[i-1], x[i], x[i + 1], x[i + 2])
surrounding the interval; and (3) SPLINE fit, which is a poly-
nomial function fitting function for the four surrounding
points. A user can use different interpolation methods to
achieve optimal effect. The overall schematic of the func-
tionality in this program is described in Fig. 7. Since the

Fig. 6 Performance of time-series construction (a pixel sample from double-cropping land)

Fig. 7 Schematic of the smoothing and interpolation for NDVI images

Pan et al. Open Geospatial Data, Software and Standards  (2017) 2:25 Page 6 of 11

http://www.harrisgeospatial.com/ProductsandTechnology/Software/ENVI.aspx
http://www.harrisgeospatial.com/ProductsandTechnology/Software/ENVI.aspx


interpolation was applied locally in the time series within a
defined interval, the result suggest that the essential shape of
the NDVI trajectory was well maintained.

Potential applications
Because our method can handle equidistantly spaced
high spatiotemporal remote sensing images to construct
time series data, this paper provided further testing and
potential applications.

Extracting phenology
Remote sensing data is particularly useful for detecting
regional crop phenological characteristics [8]. HJ-1 A/B
has a constellation of two satellites, which allows a two-
day observation cycle; by the proposed methodology and
the developed computer program, HJ-1 A/B data can be
used to construct a complete time-series dataset, making
it possible to obtain key crop growth stages. Since the
complete growth cycle of vegetation has been estab-
lished with a daily interval, this study employed the
TIMESAT program to extract the start and end of crop
seasons from NDVI time series (Fig. 8).
Since phenology dynamic in remote sensing indicates

the actual crop growth process in a pixel basis, these
dynamic processes correspond directly to actual,
ground-based phenological events, which provide indi-
cators of climate vibrations; in addition, fine-scale crop
seasonality reflects a spatial arrangement of agricul-
tural activities. This study presented mapping of the
start and end of crop seasons (measured in day-of-
year) for our test site in 2012 (Fig. 9). The results
suggest that time-series data derived from HJ-1 A/B
satellites were applicable for extracting crop phen-
ology, and the value distribution of phenological date
(measured in day-of-year) was robust and convincing.

Spectral analysis with spatial time-series data
Time-series remote sensing data can be regarding as
combinations of temporal endmembers in a temporal
feature space where the dimensions represent different
components of the time domain processes [31]. Hence,
the time-series remote sensing data could be regarded
as a hyperspectral-like dataset then to perform tem-
poral endmembers extraction technique. Endmember
extraction is the process of selecting a collection of
pure signature spectra of the materials present in a
hyperspectral image scene [32]. By analogy to spectral
mixture analysis in spectral feature spaces, the
temporal feature space conveys the spatiotemporal
characteristics of ground substances. This study imple-
mented the sequential maximum angle convex cone
(SMACC) [33] spectral tool to extract temporal
endmembers in NDVI time-series data.
As shown in Fig. 10, we extracted temporal

endmembers representing several typical ground sub-
stances. The temporal trajectory in crop phenology is a
good indicator for distinguishing cropping area and
others land cover type. Additionally, as different types
of vegetation have different phenologies, the cropping
types are more easily discriminated. Aside from that,
the time-domain phenomenon of VI time series
reflects the process of crop growth and management
level at different geographic locations; such informa-
tion was quite important for agricultural productivity
assessment.

Test with MODIS EVI data
Since ENVI/IDL-based programming provides convenient
interactions for manipulating remote sensing images, our
method is generalizable for multi-temporal remote sens-
ing data to construct a smooth time-series dataset with

Fig. 8 Season start and end of double-cropping area in NDVI time series
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Fig. 9 Season start and end extraction for wheat-corn double-cropping land

Fig. 10 Endmembers extraction with NDVI time-series data
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daily interpolation. For test purposes, 46 scenes of MODIS
EVI images (8-day composite, 500 m resolution) were ob-
tained within 1 year to construct a complete time series.
The smoothing and interpolation result shown in Fig. 11
suggests that this program was capable of retrieving the
essential trajectory of vegetation growth in the time
dimension.

Discussion
Attributing to an explosive growth of data, research in
time-series remote sensing data is receiving more and
more attention, therefore, this study was conducted
towards building higher spatial resolution, just as re-
searchers do with the VI product derived from
AVHRR, MODIS and SPOT-VGT. China’s HJ-1 A/B
remote sensing data has been successfully employed
for constructing complete and applicable time-series
data at 30-m resolution. However, very few research
article reported using such relatively high spatiotem-
poral remote sensing data to construct a time-series
dataset, and no processing software/tool is available
for that purpose. Therefore, in addressing this import-
ant topic, a new method together with an IDL-based
program for smoothing and interpolating time-series
data was developed in this paper. Some remarks are
proposed below.
When considering a high spatiotemporal time series,

users should be acquainted with data availability in the
study area and the expenses. In this paper, open-access
HJ-1 A/B data were selected as cloud free, because the
cloud-free NDVI data are relatively less affected by
noise; the S-G filtering method works well in

maintaining the essential shape of the NDVI trajectory, es-
pecially in accurately extracting vegetation phenology.
Other smoothing methods, like HANTS, are well-

known for time-series smoothing; however, HANTS tends
to ensure spatial completeness but sacrifices important in-
formation in the time dimension [34]; meanwhile such
drowned information is important in delineating vegeta-
tion growth. Likewise, alternative function fitting (sigmoid
curve such as logistic model) or Fourier-based denoising
were not suitable for implementation because their strict
shape-matching was problematic in handling the unevenly
spaced time-series data derived from HJ-1 A/B satellites.
Using those methods may exaggerate high fluctuations in
time-series data, making the result inconvincible. A
comparison of smoothing methods was tested in
section Comparison between S-G and other methods.
Particularly, when time series data is constructed for
phenology detection, a smoothing method is to be
cautiously considered [25]. Methodologies employed in
this paper for smoothing and interpolating were not
aimed at producing the most visually pleasing result,
but the most accurate. More comments and discussions
can be referred to in the literature [25, 29, 35, 36].
Several articles indicate the Sentinel-2 A/B data is

promising [11, 18]. With their short-term global revi-
siting cycle and 10-m resolution, they will play an add-
itional role in high spatiotemporal remote sensing of
time series data. In addition, current satellite constella-
tions for commercial purposes, such as RapidEye and
Planet Labs, should be considered for building a time
series, probably the underlying value within time series
analysis is truly need for public.

Fig. 11 A test with MODIS EVI product
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Conclusions and perspectives
The motivation of this paper was to provide a new method
and a computer program that facilitates the construction
of time-series remote sensing data with generalizable, po-
tential, and practical applications, specifically for up-to-
date high spatial resolution satellite data. To achieve this
goal, this study presented comprehensive processing pro-
cedures to construct HJ-1 A/B NDVI time series: the
Savitzky-Golay smoothing method was employed first to
reduce noise components from the original curve to re-
trieve the original shape of the time-series profile; then, a
locally adaptive linear interpolation was employed to gen-
erate daily NDVI based on the available imageries. After-
ward, the IDL-based program was developed to fulfill
these procedures.
Our method was able to produce high-quality NDVI

time series and might advance its application in vari-
ous fields of study. As application cases introduced in
Potential applications section, firstly application of HJ-
1 A/B NDVI time-series data in a fine-scale phenology
characterization was presented; secondly, we extracted
typical endmembers from the time-series data that
represented spatiotemporal characteristics of ground
substances, indicating the potential of using hyper-
spectral analysis techniques with time-series remote
sensing data. Finally, the MODIS EVI data was used
for testing; the result suggested that this program is
generalizable for most time-series remote sensing data.
As a primary test, based on the result above, we
believed that higher resolution time series remote
sensing data would make it much valuable than con-
ventional MODIS or SPOT-VGT, making civilian ac-
ceptable and accessible to such techniques in real life.
Since high-frequency remote sensing data will no lon-
ger be restrained to the medium and low resolution
domains, the importance of time-series remote sensing
data had been recognized, and higher spatial resolution
will add on to these. Researchers should be encouraged
to advance its applications in other disciplines. Con-
structing high spatiotemporal time series data requires
a considerable amount of multi-temporal images. Re-
searchers may be concerned about the cost, data ac-
quisition and preprocessing. Currently, programs and
tools for satellite image processing are facing technical
challenges with upcoming satellite sensors with in-
creasing spatial and temporal resolution. There is an
urgent need to develop standards for data processing
of flow and analysis systems, which would allow fast
data processing to facilitate higher-magnitude time
series data [3, 18].

Endnotes
1https://github.com/panzhuokun/Time-series-remote-

sensing-construction-IDL-code-.git
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