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Abstract

The advancements and new techniques in information technologies are making it possible to acquire large-scale
spatial data through satellites, radars and sensor networks. The collection of vast amounts of environmental data
increased the demand for applications which can manage and process large-scale and high-resolution data sets in
real-time. One of the important tasks for organizing and customizing hydrological data sets is the delineation of
watersheds on demand. Watershed delineation is a process for creating a boundary that represents the
contributing area for a specific control point or water outlet, with the intent of characterization and analysis of
portions of a study area. Although many GIS tools and software are available for watershed analysis on desktop
systems, there is a need for optimized libraries for client-side and server-side web applications for creating a
dynamic and interactive environment for exploring hydrological data. In this project, we developed and
demonstrated several watershed delineation techniques on the web, with seven different use cases implemented
on the client-side using JavaScript, WebAssembly, and WebGL and on the server-side using Python, Go, C, and
Node.,js. We also developed a client-side GPGPU (General Purpose Graphical Processing Unit) algorithm to analyze
high-resolution terrain data for watershed delineation by benefiting from the parallelizable nature of GPUs. The
web-based real-time analysis of watershed segmentation can be helpful for decision-makers and stakeholders while
eliminating the need of installing complex software packages and dealing with large-scale data sets.

Keywords: Catchment delineation, GPGPU, Data compression, Web-based visualization

Introduction

Ever expanding sensor networks that collects high-reso-
lution spatial datasets provide many opportunities for
hydrological sciences [9], while bringing challenges in
large-scale data handling and processing [25]. There are
many challenging tasks that employ sensor networks re-
garding organization and customization of the datasets
[8] within a watershed for users dealing with the data.
The watershed (i.e. drainage basin or catchment area) of
a location represents the land area in which any precipi-
tation eventually flows into the same outlet. Thus, delin-
eation of the watershed can be defined as finding the
catchment area of a point [2]. Watershed delineation
helps users identify the surface water features within a
watershed and understand the downstream impacts
when planning and implementing water quality and
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quantity related protection and mitigation actions.
Watershed delineation is used extensively in many infor-
mation systems [6] and visualization applications [7].
Since hydrologic modeling efforts vastly assume that
watershed delineation is done accurately, the perform-
ance of watershed delineation tools becomes more
important. Providing the most accurate results [3], man-
ual watershed delineation is done by finding water
divides on topographic maps [2] while its automation is
an ongoing research interest in the field of hydrology.
Since topography takes a crucial role in hydrological
modeling, the key aspects of the modeling efforts start
with the representation of geography in the digital envir-
onment. Thus, all watershed delineation tools and librar-
ies depend on the generation of digitally expressed
topography data. Creation of this data broadly achieved
by flow routing algorithms. Several cumulatively devel-
oped flow routing algorithms are employed for generat-
ing the data required for watershed delineation in both
software packages and within standalone applications.
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Algorithms including D8, Rho8 [11] and D8-LTD are
used to create grid-based flow matrices from the digital
elevation model (DEM) data. DEMs are rectangular
grid-shaped datasets that provide elevation information
of the surface at discrete geolocations [17]. While the
hydrologic network data generated by the aforemen-
tioned algorithms are widely exploited by watershed
delineation applications, they can be used for other tasks
in hydrology. The D8 algorithm is the most used one
among those methods [22] and, consequently, the data
used within this study is generated by taking advantage
of the D8 algorithm.

Current implementations

Early examples [15, 20, 24] of automated watershed
delineation start with advancements in DEM data gener-
ation. Jones et al. [16] utilized triangle-based terrain
models in watershed delineation. Nelson et al. [23] pre-
sented an algorithm that is centered upon triangulated
irregular networks to delineate watersheds by finding
their boundaries. Tarboton [26] introduced an approach
in watershed delineation exploiting flow directions as
the steepest downward slope. In [19], Lin et al. studied a
GIS-based watershed analysis system, WinBasin. While
WinBasin provides a system with incorporated flow dir-
ection calculation algorithm, it also finds the watershed
using flow direction matrix. Chu et al. [5] introduced an
alternative way of delineating watersheds precisely by
taking complex land surfaces such as flats and combined
puddles into account. Haag and Shokoufandeh [14], pre-
sented an algorithm to delineate watershed boundaries
by, rather than discovering the internal area, marching
around the edges of its corresponding region namely
using Haag Shokoufandehs March (HSM) algorithm.
Again Haag et al. [13] presented a new algorithm with a
similar but faster approach called Watershed Marching
Algorithm (WMA) in order to delineate watersheds
from 2D flow direction grids. Even though they
employed differentiable approaches, all these algorithms
share the concept of accumulation of cell contributions
across a landscape while obtaining this information from
flow direction grids [3].

Various tools within geographic information systems
(GIS) have been developed in order to automate this
process. One of the most used watershed delineation
tools comes within the Spatial Analyst extension of Arc-
GIS which is a commercial product. Being an open
source alternative to ArcGIS, QGIS provides a free-to-
use watershed delineation tool named as Watershed
Basins Algorithm. While this option enables researchers
to run delineation on their own data, it's not easily
accessible considering that it needs the installation of a
comprehensive GIS software package into the system.
Another free solution is the Geographic Resources
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Analysis Support System (GRASS). GRASS is an open
source GIS package which can be used both through
command line and user interface. This solution is rela-
tively easier to integrate into new software systems by
taking advantage of its command line application pro-
gramming interface (API). Although GIS systems can be
used on server-side, they may not be the optimal solu-
tion for web applications considering the computational
load on the deployed server to solve the algorithm for a
given dataset. One watershed delineation tool accessible
on the web is the environmental Resources Assessment
and Management Systems (eRAMS). eRAMS provides a
cloud-based watershed delineation tool while widely de-
pending on GDAL package’s capabilities. Considering
GDAL is a software package that is not supported to run
on browsers, eRAMS handles all processing on server-
side including the watershed delineation. Other tools
that are not as popular as those already mentioned also
provide a suitable environment for watershed delineation
on-demand but lack the integration to other systems
[12, 21]. Albeit some studies present web-based systems
[4] to delineate watersheds, they still handle this task on
server-side rather than utilizing client’s computing
power.

The contribution of this study is providing an opti-
mized data format and watershed delineation algorithm
for web applications. The presented algorithm is devel-
oped, tested, and benchmarked is various languages for
both server-side (i.e. Python, Go, C, Node.js) and client-
side (i.e. JavaScript, WebGL, WebAssembly) applications
as an open source software package. An alternative par-
allelizable delineation algorithm is developed using
WebGL to benefit from the power of Graphical Proces-
sor Units (GPU) as a general-purpose application. All
implementations are open source and ready to use in
web systems. All server-side implementations can easily
run through the command line as both standalone tools
and integrated scripts into other programmed systems.
The client-side implementations can run on browsers as
standalone applications and be reproduced in other
web-based systems.

Implementation

Proposed software modules within this study involve the
implementation of two separate watershed algorithms in
various programming languages and technologies (Fig. 1).
While the first algorithm is for conventional program-
ming systems, the second one is specified for WebGL
environment in order to utilize Graphical Processing
Units (GPUs) for watershed delineation. The watershed
delineation algorithms run on flow direction data for
each of these implementations. Flow direction data is
generated using the D8 algorithm from digital elevation
data, and it has the data structure of a matrix. Each cell
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Fig. 1 Overview of the watershed delineation implementations

or item in the matrix represents the direction of the flow
to one of the eight directions. Numbers 1, 2, 3, 4, 6, 7, 8
and 9 represent the flow to northwest, north, northeast,
west, east, southwest, south and southeast respectively
(Fig. 2). Potential sink in the landscape can be handled
at the flow direction step. If the flow direction data con-
tains sinks, algorithm skips cells with no drainage or
flow information and process neighboring cells. This
might allow sinks to be included within the watershed
area depending on the sink location.

The main watershed delineation algorithm consists of
two separate functions. The first function handles find-
ing the watershed area with the time complexity of O
(wh) where w and h are the weight and the height of the
data matrix, respectively (Fig. 3). The second function
finds the watershed border using the output of the first
algorithm in O(n) time where n is the number of edge
cells within the watershed (Fig. 4). Watershed finding
algorithm is similar to the breadth-first search (BES)
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Fig. 2 Eight possible flow directions and their respective values

though intensively optimized to specialize for watershed
delineation. Rather than adding to the queue and con-
suming nodes to visit from the queue, this algorithm
presents a two-way visit and store mechanism within an
array. In each iteration, the visit and store parts of the
array are switched, and new nodes are explored by this
mechanism as iteration continues. The algorithm uses
direction arrays to ease understanding flows within the
data. In order to find the border around the computed
watershed area, the output array is fed to the border de-
lineation algorithm. Border delineation algorithm is a
special implementation of marching algorithm. It simply
walks around the watershed found by the previous step.
First, it takes the initial point (outlet) on the watershed
as the baseline, and walks around the watershed until it
returns to the first point to finish calculating the border
iteratively.

Data encoding

The flow routing data that is used for experiments in
this study consists of 5900 x 3680 cells for the State of
Iowa within a rectangular buffer zone. Data is generated
using the 90-m resolution DEM data and takes approxi-
mately 150 MB of space on the disk as a raster file. Espe-
cially for client-side solutions this amount of data
creates a huge overhead when conveyed to the client-
side on the web. In order to reduce the transferred data
amount between the server and the client, the flow route
matrix needs to be optimized in file size. Since the data
was in matrix structure and only consisted of numbers
(1-9), it is possible to encode all data in an image. For
this purpose, we employed lossless Portable Network
Graphics (PNG) format and stored the whole data in a
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Algorithm 1 Find Watershed

Input:

Array ImageData with the length of w*h,
2D point FirstPoint that is the xy coordinate of the current pixel,

Output:

Array Matriz consists of 1s and 0s, has the length of w*h representing the watershed.

procedure FINDWATERSHED(I'mageData, FirstPoint)

Matriz[FirstPoint] < 1
let process be an array of zeros
processsiore[current] < FirstPoint

switch save and visit parts

for each unvisited node in visit part do

1:
9
3.
4
5: while there are unvisited nodes do
6
7
8 add the node to the store part of the process array
9

for each neighbour of the current node in the ImageData do

10: if neighbour’s flow direction is to the node then
11: processsiore[current] < node

12: Matriz[node] < 1

18: end if

14: end for

15: end for

16: end while

17: return matriz

18: end procedure

> Consists of two parts, store and visit.

Fig. 3 Pseudo code for watershed finding algorithm

single-color channel of an image (Fig. 5). Each data point
in the actual flow route matrix was embedded into each
pixel’s red channel and the file size was reduced to 5.3
MB. This new format as an image doesn’t bring an ex-
tensive decompression overhead in computation since
the image files have optimized native support in web
standards to access individual pixels. Our experiments
have shown that the overhead is minimal considering
conveying the whole raw data takes much more time
with an average internet connection than uncompressing
it programmatically. Thus, the tradeoff in this may be
drawn in favor of this compression for client-side

solutions. As in image format, web applications cache
the data in the browser which avoid download in future
usages. In the case of server-side implementations, while
it’s still possible to use this data, it may not be feasible
due to the decompression workload. Thus, the data in-
corporation is better done through either as a binary file
or embedded data into the actual code, rather than a
compressed image type. Server-side implementation re-
quires transferring the output data (watershed boundary,
<100 KB) for each request, which after certain number
of requests exceeds the raw image data (DEM, 5MB)
transfer for client-side implementation.

Algorithm 2 Find Watershed Border

Input:

Output:

edge of the watershed.

end while
return Border

1:
2
3
4 Border[current] <— NextPoint
5
6
7. end procedure

Array Matriz consists of 1s and 0Os, has the the length of w*h,
2D point FirstPoint that is the xy coordinate of the current pixel,

Array Border represents the watershed’s border.
> Initially FirstPoint and it’s immediate child node are added to the Border.

Starting from these two nodes Border will then be filled with nodes that are on the

procedure FINDBORDER(M atriz, FirstPoint)
let NextPoint be the be the first of the neighbors when right hand rule is applied
while the NextPoint on the Matriz is not the FirstPoint do

Fig. 4 Pseudo code for watershed border finding algorithm
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Client-side implementations

As mentioned in the Introduction section, watershed de-
lineation solutions provided in the literature requires a
server when provided as a service. One-time watershed
delineation task is not computationally expensive. How-
ever, it is not a trivial task to handle this process on ser-
ver-side when the application is served on-demand and
accessed by thousands of users. Doing such computation
on demand for every user is computationally expensive
for service providers. This workload that server-side
watershed delineation tools handle can be surpassed by
handing over the task to the client-side. One drawback
might be conveying whole data to the client-side which
can be overcome by encoding the data as an image for
lower DEM resolutions as mentioned above. Considering
the client computers are powerful enough to handle
such task and the algorithm is lightweight when it runs
for a limited number of times, it can be argued that this
is a good practice to handle watershed delineation in cli-
ent-side rather than server-side when data size stays
manageable after image encoding. The transferred data
will be cached on the client-side which eliminates future
data transfers from server.

JavaScript implementation

The JavaScript implementation of the watershed delinea-
tion tool depends on the embedded data from image.
When the system is running, the script first opens the
image and then puts the data into a typed array. This
unsigned integer array then fed into the implemented al-
gorithm and the output is either reported on the console
or saved as a geospatial file, Keyhole Markup Language
(KML). Currently, we provide three types of JavaScript
implementations. One of them is a pure JS code snippet
and can be run through Node.js API in which the details
will be given in server-side implementations sub-section.
Rest of the implementations are designed for client-side
and they come with an accompanying HTML file that
serves the output border array to the client (Fig. 6).
These two client-side solutions have a core difference,

that is, while one of them is written in pure JavaScript,
the other one utilizes WebAssembly to move the com-
putations to a lower level technology. This change is
expected to provide better time-wise performance.
WebAssembly is a low-level computational technology
and a web-standard that complements JavaScript to
speed up tasks that JavaScript falls short of in terms of
computation speed. It should be also noted that the
watershed delineation tool’s WebAssembly implementa-
tion was compiled using the Emscripten [10] environ-
ment from the C implementation that will be explained
in the server-side implementations subsection.

GPU-based implementation

Since the elevation data is encoded as an image, it pro-
vides the unique opportunity to use GPUs by feeding
data into textures. Though GPUs are initially designed
to facilitate the image creation process due to their
highly parallel structure, it is proven to be a powerful
tool for complex scientific computations. To alter the
default process to implement a general-purpose applica-
tion to work with GPUs, one should evaluate the graph-
ics pipeline (i.e. rendering pipeline) considering the
application’s needs. Graphics pipeline is a conceptual
model that defines the workflow for a GPU to render a
3D object into a 2D representation. The nature of the
pipeline depends on the architecture of the underlying
hardware as well as the design choices for the intended
graphical outcome. Thus, there is not a universally
agreed-upon pipeline. However, certain graphical APIs
have been created to increase the abstraction and
present a more unified interface for GPU manipulation.
These APIs include Direct3D, Metal, Vulkan, OpenGL,
and WebGL, which is a derivation of OpenGL for use
via browsers. In this work, we have implemented the
watershed delineation algorithm in WebGL due to its
widespread support by industry leaders and the commu-
nity, its ability to provide a convenient way to use a cli-
ent-side GPU, and its compatibility with all major
browsers via web and mobile. Although the presented
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approach is built with consideration of the graphical API
supported by WebGL, it can easily be modified to work
with other APIs.

There are two types of shaders available in WebGL,
namely vertex and fragment shaders. Vertex shaders
are responsible for generating the clip space coordi-
nates. Fragment shaders allow the application of a
procedure to access each pixel in parallel every cycle
in order to calculate and assign its color. The 90 m
DEM data used in this project is represented as an
image with a 5900 x 3680 pixel resolution, meaning
that the number of times the fragment shader will be
run per frame is 21,712,000, which proves the sensitiv-
ity of the code’s efficiency. Some of the best practices
include avoiding or minimizing the use of loops and
branches in shaders. Another challenge is that only
the color value of the current pixel can be manipu-
lated from shader since otherwise would break the
parallelism, though other pixels’ colors can be read.

Parallelization of algorithms is a major challenge since
they usually will have sequential components. The
amount of speedup actually depends on the paralleliz-
able portion of the algorithm as expressed in Amdahl’s
Law [1]. Thus, the presented approach for watershed de-
lineation was adapted in a way to maximize overall
speedup by minimizing the execution time of parts that
cannot benefit from the computational power brought
by the GPU. There are two main components of this cli-
ent-side module including the preprocessing of DEM
data in JavaScript, and watershed delineation in WebGL,
where former is sequential, and latter is the parallelizable
component.

Initial implementation

After the image-encoded DEM data is loaded to client-
side, a WebGL program is created, linked with the
Vertex and Fragment shaders, and bound with the
loaded image that is processed into a WebGL Texture.
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The starting point of the watershed delineation process,
which has been selected dynamically by the user, is enu-
merated as 10 and updated in the image before it is pro-
vided to the WebGL program.

The main algorithm is coded in the fragment shader
and runs for every pixel independently. Since the frag-
ment shader limits us to modify any other pixel’s color
other than itself, the algorithm’s perspective is changed
in a way that may seem semantically counter-intuitive.
As a reminder, each pixel is encoded with the direction
information of water flow. The algorithm reads the
current pixel’s value, which then points out to the neigh-
boring pixel that represents its downstream. If that pixel
is encoded with value 10, meaning that it is part of the
watershed, the current pixel is updated as 10 as well.
This process continues until there are no pixel updates
in a cycle, which suggests that the watershed is com-
pletely delineated within the scope and resolution of the
provided DEM data. Pseudocode of this process is de-
scribed in Fig. 7 and can be observed to have O(1) time
complexity.

Optimizations and improvements

Described approach has been successfully implemented
and demonstrated that the client-side GPUs can be uti-
lized to delineate watersheds. However, the performance
improvements were necessary to make it a viable solu-
tion for practical use. Various modifications have been
made to better use the language by respecting its limita-
tions and benefiting from its advantages. These include
the use of low precision floats, eliminating if conditions
by developing simple mathematical equations and cach-
ing results of the procedures that are computationally
costly or fundamentally slow. Additionally, several
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architectural optimizations have been designed and im-
plemented that result in significant speedups and worth-
while trade-offs.

As the DEM data is only expressed via the red channel
of the image, remaining channels (i.e. gha - green, blue,
alpha) have the potential to be utilized in order to de-
crease the time spent in the fragment shader. One
approach is to decrease the texture’s dimensions by a
factor of 2 (i.e. reduce the texture to the quarter of its
size) by placing the neighboring pixels in the gha color
channels. This means treating each channel as if it is a
different pixel. By reducing the size of the texture, and
thus the number of fragment shader executions per
cycle, it decreases the overall runtime significantly. How-
ever, the overhead added to the fragment shader to
handle this new architecture prevent it to be a viable
solution.

Another approach is checking a few steps ahead rather
than just the immediate neighbor. However, to check N
steps ahead in one cycle basically requires sequentially
running the same shader code N times. Thus, the trade-
off does not prove to be efficient. A critical design choice
when coding the fragment shader is to minimize the de-
pendencies and sequential logic. We have utilized the
gha color channels to store the direction values of its
three downstream pixels. Fragment shader can calculate
all downstream coordinates and read their values with-
out having to wait for the sequential process. Instead, it
reads the downstream values in parallel to form a
length-4 vector and calculates whether any of them is la-
beled as the watershed, thanks to the power of GPUs in
vector arithmetic.

A watershed usually grows in certain directions by na-
ture. For the first cycle, only the neighbors within the

Algorithm 3 Watershed Delineation in Fragment Shader

Input:
Matrix D representing the DEM data,

Output:

B ch-rent <~ D[p/
o dircurrent < F current( Ted)
. if dircurrent # 10 then

Fdownstream <~ D[p + OﬁSCtQD/

if Fdownstmam(red) = 10 then
dircurrent =10

end if

: end if

return dircyrrent

© 0N DT W

-
<

2D point p that is the xy coordinate of the current pixel,
float dircyrrent representing the encoded direction value.

> Note that Feyrent is the RGBA value of the current pixel whereas Fgownstream 18
the RGBA value of the downstream pixel as determined by the DEM data.

offset2D <« vector2D((dircyrrent + 2) (mod 3),2 — [dircummt/?)])

> Check if it’s already a watershed.

watershed delineation algorithm

Fig. 7 Pseudo code for WebGL based watershed delineation algorithm. This figure shows the pseudo code for the WebGL based client-side
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radius of 4 pixels can turn into a watershed. Yet, the
fragment shader still applies to all pixels. This workflow
introduces a great inefficiency considering the huge size
of the DEM data with respect to an average-sized water-
shed. We have implemented a mechanism to apply the
fragment shader to only the pixels that are within the
radius of coverage of all the pixels that are labeled as the
watershed. Vertex shaders are utilized to define the tex-
ture portion that will be forwarded to fragment shaders.
Each cycle, the forwarded subset of the texture is
updated to expand to cover the newly discovered water-
shed parts and to shrink to eliminate the non-expanding
routes of the watershed.

Server-side implementations

Besides the client-side implementations, we propose
four different server-side implementations (i.e. Python,
C, Go, Node.js) of the algorithms described in Figs. 3
and 4. All of these implementations have the same
functionality and behavior. They can be used through
the command line and can be integrated to other
programmable resources using either the intended
languages’ command line interfaces or importing the
package inline. In addition to the encoded PNG file,
the server-side programs also accept the binary ver-
sion of the DEM data as input. When proper input is
given through the command line, the output should
be the generated KML or coordinates of the intended
watershed. It should be noted that these implementa-
tions can still be extended for the data that is
encoded on raw text, but we do not provide the re-
quired application interfaces for such usage.

Python implementation was coded using Python ver-
sion 3.6.5. If encoded PNG is intended as the input file,
watershed delineation tool needs a Python package (i.e.
Pillow) for decoding. Other than decoding package,
Python implementation does not have any dependencies.
Usage through command line interface can be achieved
by “python watershed.py” (Fig. 8). Besides the command
line interface, Python implementation can be imported
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to external Python scripts and used within other pro-
grams. An example Python script that demonstrates the
import of the program from a third-party application
can be found in the repository. The complete list of op-
tions and arguments for the command line execution of
the Python, JavaScript, C, and Go programs are listed in
Table 1.

C implementation was coded on top of C99 and is ex-
pected to work with C11 and C18 as well. C version
does not depend on any non-core libraries other than
the PNG Reference Library (i.e. libpng) that is used for
reading the data from the encoded image. Unlike
Python, C implementation needs to be compiled. While
GCC is used as the first choice of a C compiler during
this study, Clang is also tested for compatibility pur-
poses. Compilation can be made with the command “gcc
-0 watershed.out watershed.c” which produces an execut-
able named as watershed.out. After the compilation, the
compiled executable can be run on the command line
by “/watershed.out’.

Go implementation does not have any non-core library
dependencies and needs to be compiled to an executable
similar to C. This implementation was built on top of
Go 1.11 and it can be compiled using GC (official Go
Compiler). Compilation can be done by “go build” com-
mand in the directory that the file watershed.go is stored.
After the compilation, the command line tool can be
used in a similar fashion with the C implementation. Al-
though running a Go program on the command line is
straightforward, importing it into other Go programs
requires package formatting, which is provided in the
repository along with an example Go program to dem-
onstrate its usage.

The JavaScript implementation presented in this art-
icle can be used in the server-side as well with a few
minor changes. In order to achieve the server-side com-
patibility and to have a JavaScript runtime environment,
Node.js was employed and a command line tool was
created. Importing the server-side JavaScript implemen-
tation to external JavaScript programs is also possible

-

Input Type: png

Input File: direction90m.png
Output Type: kml

Output File: out.kml

X: 4777

Y: 897

Data Length: 21712000

Image Draw Time: 0.41 sec(s)
Total Border Length: 27528
Total Elapsed Time: 10.4 sec(s)

$ _

$ python watershed.py -t png -i direction90m.png -z kml -o out.kml -x 4777 -y 897

Fig. 8 Sample input and output for Python implementation. This figure shows a pair of sample input and output for the Python implementation.
Each of the client side implementations can be run using the same methodology
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Table 1 Command line manual for Python, JavaScript, Go and
C implementations

Option Description

-r don't print outputs

-h help

-i inputfile indicate input file's path

-0 outputfile indicate output file's path, default = ws.out

-t bin|png type of input, either bin or png, default = bin

-z binfkml type of output, either kml or bin, default = kml
-x xvalue x value of the target point, should be integer

-y yvalue y value of the target point, should be integer

using the regular Node.js API. Usage sample is provided
in the git repository.

Even though this study presents a software package for
real-time watershed delineation implemented in a variety
of programming languages, there are still other pro-
gramming languages researchers and programmers may
have employed in their projects. It is possible and feas-
ible to use presented implementations with other lan-
guages. In order to provide a proof of concept, we
included sample programs written in PHP and Ruby in
the repository to show that it is possible to use any of
the aforementioned implementations within other pro-
gramming languages. These sample snippets simply use
the employed programming language’s command line
API to call one of the already implemented watershed
delineation tools in either Python, C, JavaScript or Go.

Results

The aim of this study is to provide easy to use watershed
delineation tools for both server-side and client-side web
applications. The performance evaluations of the imple-
mentations are reported in this section. Elapsed time
reports in Table 2 were measured on two different com-
puters; the client computer that is powered by Intel(R)
Core (TM) i7-6800K CPU @ 3.40GHz and 32 GB 2800
MHz RAM, and the server that runs on Intel(R)
Xeon(R) E5-2699 v4 @ 2.20GHz CPUs. The results for
server-side implementations were obtained using a bash
script that measures the elapsed time of the entire run
for each implementation. On the client-side, we
employed Google Chrome Version 70.0.3538.110 which
was the up to date version of Google Chrome at the
time of these experiments. Besides the CPU based runs,

Table 2 Average run-times (in milliseconds) of watershed
delineation for the selected point

Server-Side Client-Side
Python C Go  Nodejs JavaScript ~ WebAssembly — WebGL
5130 80 144 105 113 67 344
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we also included performance report for WebGL imple-
mentation with the same client system that employs an
NVIDIA GTX 1080 as the GPU. It should be noted that
the performance of client-side implementations for the
same system may differ with a different choice of
browser and version. These tests were done for a se-
lected point (X =4777, Y =897) on flow direction matrix
that generates one of the largest watersheds in the state
of Iowa with 90 m DEM resolution.

Reported results on Table 2 show that the fastest
implementation on server-side is the one that is
written in C. While Go version performs fair, it
doesn’t provide a solution that would outperform C
implementation when C compiler is run with max-
imum optimization settings. The server-side run of
the JavaScript implementation provides a feasible
option and the Python implementation performs
significantly worse than others. On client-side, the
comparison between pure JavaScript implementation
and WebAssembly powered version clearly shows
that when WebAssembly is employed, client-side
JavaScript becomes significantly more effective.
Besides the conventional methods, GPU powered
WebGL implementation also performs in a conveni-
ent manner.

Conclusions

In this study, a custom watershed delineation
algorithm that uses flow direction as inputs was
proposed for conventional programming systems.
Implementations of this algorithm for both server-side
and client-side in Python, C, Go and JavaScript were
also presented. Besides these implementations and the
algorithm, as a core contribution, we also proposed a
WebGL powered client-side approach in watershed
delineation. After discussing the algorithmic chal-
lenges and watershed delineation tool’s appearance
from user’s perspective, the performance comparison
of implementations was presented. All of the imple-
mentations presented here are open sourced and can
be accessed on Github a public git repository. It
should be noted that this repository has GNU Gen-
eral Public License v3 (GNU GPLv3) license and must
be distributed with the same license if changes are
made on the code.

As a future enhancement, we aim to incorporate
lower-level technologies for client-side JavaScript as
they become stable. It is possible to use the server-
side tools with programming languages other than
the ones that have watershed delineation tool imple-
mented by using their command line or shell APIs.
We plan to implement the tool in other scripting
languages that are widely used in web development
such as PHP and Ruby as well.
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Availability and requirements
Project name: Server-side and Client-side Watershed
Delineation Tools.

Project home page: https://github.com/uihilab/water-
shed-delineation.

Operating system(s): Platform independent.

Programming languages: C, Go, JavaScript, PHP,
Python, Ruby.

Other requirements: C99, Go 1.11, Python 3.6.5,
PHP 5.3.

License: GNU GPL.

Any restrictions to use by non-academics: License
needed.

Abbreviations

API: Application Programming Interface; BFS: Breadth-first search;

DEM: Digital Elevation Model; eRAMS: The environmental Resources
Assessment and Management Systems; GIS: Geographic Information System;
GNU GPLv3: GNU General Public License v3; GPGPU: General Purpose
Graphical Processing Unit; GPU: Graphical Processing Unit;

GRASS: Geographic Resources Analysis Support System; HSM: Haag
Shokoufandehs’ March; KML: Keyhole Markup Language; PNG: Portable
Network Graphics; WMA: Watershed Marching Algorithm
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