The findings suggest that the DIAL programme attracted and engaged a diversity of participants in terms of gender, professional interests and geographic areas of residence. Most participants were university-level students in academic domains such as business administration, crisis management, architecture, public health, computer science, and geomatics engineering. The participants were originally from different places in Nepal, both urban and rural, but were studying in large cities such as Kathmandu and Pokhara. In the duration of a few months during the programme, they produced a substantial amount of geospatial data for under-mapped areas, and some participants sustained their participation beyond the programme time frame. In addition, the DIAL participants reported a variety of impacts on their spatial awareness and digital leadership skills.
Participant motivation
Among the various potential motivations to apply to the programme that were rated by Cohort II, learning digital leadership skills emerged as the most important, followed by contributing to society, meeting new people and making new friends, and learning to map, in that order. Learning digital leadership skills, which was emphasized through programme elements such as practising working remotely and regularly convening with mentors and peers, may have helped sustain participants’ engagement throughout the internship period. This finding suggests that making maps was a lower priority, primarily viewed by interns as a means to gain digital leadership skills and contribute to society. The findings resonate with those of Hite et al. [37] that students were involved in the YouthMappers network to contribute to real world issues and social change through mapping in addition to increasing their personal understanding of geography.
We recognize the potential for biases in these findings, as respondents tend to avoid extreme responses or choose responses that they believe will potentially please the researcher [38]. In addition, we administered this survey to a relatively small population. Nonetheless, these findings suggest the potential of embedding efforts to expand youth participation in mapping in more broadly framed youth leadership programming, as well as the importance of further research in this area.
Intern productivity
We found that the eight DIAL Cohort I interns made 705,271 map changes in a period of 2 months. The 19 Cohort II interns made 1,223,670 map changes over a period of 3 months. While the data quality was not assessed, the interns were monitored by geospatial data professionals, and feedback was provided when necessary by the KLL staff coordinator. The interns also validated each other’s map edits. Although it is difficult to compare the amount of geospatial data generated by DIAL with that of other targeted mapping initiatives due to differences in programme design and data availability, DIAL generated a substantial amount of map data in typically under-mapped places of rural Nepal.
DIAL cohort comparison
The number of interns in Cohort II was double that of Cohort I, and the duration was 1 month longer. However, the amount of map changes increased by only 1.73 times. This finding highlights the importance of experimentation in programme design to maximize geospatial data generation. We hypothesize that remote mentoring, feedback and coordination with interns was potentially less effective with more than double the number of interns, while the staff resources remained similar to that of Cohort I. An empirical study by Dittus & Capra [39] found that verbal rewards and peer feedback were effective in newcomer retention. We also note the possibility that the interns in Cohorts I and II were motivated by different interests, which translated into greater/less time spent on mapping. However, we are unable to explore these possibilities, as we did not collect motivation data for Cohort I or detailed data on staff engagement with interns for either cohort. The impacts of participant motivation and the role of programme facilitators with respect to participant mentoring are important areas for further research.
Interns’ academic backgrounds and mapping outcomes
Interns’ academic backgrounds ranged from business administration to architecture to crisis management to geomatics engineering.Footnote 1 There were more programme applicants and selected participants with academic backgrounds in geomatics engineering than those with backgrounds other fields. Interns with backgrounds in geomatics engineering, arguably because of their understanding of the value of open geospatial data and the direct link between mapping and their career prospects, were found to be more active in mapping tasks.
Although interns with backgrounds in geomatics engineering were also new to OSM at the beginning of the internship, they mapped more on average than the other interns during the internship period. During the second and third months after the Cohort I internship, two geomatics engineers mapped in both months and one mapped for 1 month, while the rest of the interns (who did not have backgrounds in geomatics engineering) stopped mapping, as shown in Fig. 1. In the figure, we have marked the end of each month on the horizontal axis. We did not consider the month directly after the internship to observe continuity, as the interns were asked to make up days they missed during the scheduled internship at that time.
The Cohort II outcomes were similar, with one geomatics engineer continuing to map during the second and third months after internship, while the other intern also continued mapping at somewhat higher levels, as shown in Figs 1 and 2.
In each cohort, one student with a background in geomatics engineering was an outlier whose contributions overshadowed those of his or her peers. During the second and third months after the internship, three Cohort I interns and three Cohort II interns continued to map in OSM. Among those six interns from both cohorts who continued mapping, only one (from Cohort II) did not have a background in geomatics engineering. Yang, Fan, Jing, Sun, & Zipf [40] found that prolific contributors are driven by enthusiasm, a sense of responsibility or related careers. These findings suggest that participants with a greater understanding of the value of data in OSM and/or potentially a greater likelihood to use OSM professionally might be more likely to be prolific and maintain their participation; however, this issue also requires further study with a larger population and consideration of the role of other factors, such as gender, socio-economic status, household organization, and personal motivators.
Digital leadership development
Interns from both cohorts reported in their blogs and final reports that DIAL improved their skills, increased their civic awareness and provided important professional experience. For example, one intern noted that she “improved … reading, writing and presenting skills.” Other interns described their improved time management skills, which some highlighted as an important professional skill, while others underscored the enhancement of their ability to “serve society voluntarily.”
Some interns explained that mapping helped them look at their surroundings in new ways. For example, one intern shared, “Something I noticed was that I started looking around and noticing places I would probably have ignored; mapping made me aware of my surroundings, and I would discover facts and details I might not have discovered otherwise.” Another intern noted, “Reading about the aspects of society that a map can reflect and realizing it practically by mapping was illuminating; I got to glimpse the socio-economic conditions of people of different parts of Nepal.” Another intern appreciated field data collection as offering experience with “how to deal with people in communities” and how to access the types of information they held for broader public benefit. Interns also indicated that the internship helped them “experience a professional life.”
The intern reports indicate not only that the interns were contributing their spare time to fill data gaps in OSM but also that DIAL participation had impacts on the interns’ skills and worldview, reflecting others’ findings that the process of mapping changes not only the map but also the mappers. Participation in mapping events, commonly humanitarian mapping, has been found to increase mappers’ understanding of the power of mapping to help society; for example, a study of a mapathon designed for primary school children found that the mapping event made students understand the social relevance of mapping (“maps save lives”) and provided an opportunity to discover something about different people and ways of life [41]. Engagement in using open source tools to collect geospatial data and increased awareness of humanitarian challenges in other parts of the world nurtures a socially engaged population [3].
Limitations and direction for future research
The exploratory nature of this research imposed several limitations. First, the study population was small, and we did not have a well-matched control group. We primarily considered the impact of the programme in terms of the amounts of geospatial data generated in under-mapped locations. Although the data quality of the contributions was monitored and feedback was provided to interns to minimize errors, a thorough study of the data quality of contributions made in remote settings would provide additional useful knowledge for practitioners. Additional data collection on participant civic learning and whether and how civic learning translates into civic action would be an important extension of this research. Additional data collection and an in-depth analysis to assess the effects of participant characteristics and factors, such as the engagement of programme coordinators with interns on mapping outcomes, would be helpful.
The study also points to areas of potential interest in OSM scholarship. Inquiry into the development of digital leadership skills and the potential to link mapping with youth leadership, civic engagement and professional learning is promising. Further comparison of targeted mapping initiatives such as DIAL to crowdsourcing approaches to contributor engagement other than mapping events could help increase understanding of the efficacy of these approaches.